LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

ASSEMBLER

An assembler is a program that accepts as input an assembly language program
and produces its machine language equivalent along with information for the
loader. Although we the main task of
the assembler is to produce machine
code, but also has to produce other
information for the loader to use. E.g.
externally defined symbols must be
noted and passed on to the loader as the loader doesn’t know the address (value)
of these symbols and it is up to the loader to find the programs containing them,
load them in core and place the values of these symbols in the calling function.

Machine
Assembly — —» Language and

Language other
Progrem information for
the loader

Here we will consider the programs as “decks” that are inputs as well as outputs of
the assembler. Basically decks of cards were used in olden day as secondary
memory.

GENERAL DESIGN PROCEDURE

There is a general way in which all software is designed and this should be known
before designing the assembler. Listed below are six steps that should be followed
by the designer:

Specify the problem.
Specify data structures.
Define format for data structures.
Specify algorithm
. Look for modularity (i.e. dividing a program into modules)
6. Repeat 1 through 5 on each module in step 5.

DESIGN OF ASSEMBLER
STATEMENT OF PROBLEM

Mnemonic
instruction

Relative
address

Mnemonic
instruction

Source program Relative
address

START 0

USING *15

L 1,FIVE L 1,_(0,15) L

1,_(0,15) A

1,_(0,15) ST

DC F4 4 4

1,16(0,15)
1,12(0,15)
1,20(0,15)

A 1,FOUR A
ST 1,TEMP ST

DC F'5’ 5 5
DS 1F

Let us pretend to an assembler and translate the given assembly language program
into machine language. The building blocks of the assembly programs are pseudo
codes, machine codes and symbols or literals. The pseudo codes as discussed give
information to the assembler. The machine codes has got unique binary code that
can be found out from the 360 manual and can be substituted. Next the symbols or
literals that represent values stored at particular locations are substituted with
these memory addresses.

As we scan through the program, we first encounter a pseudo code START that
informs the assembler that the name of the program is JOHN. Next is the USING
pseudo code that informs the assembler that R15 is used as the base register and
during execution will contain the address of the first instruction of the program.
The load instruction next is substituted for its binary values and then R1 and since
location of FIVE is not known so we leave space for offset, and substitute 0 for
index register since it is not used and 15 in place of base register. So the entry

Initialize

Store label
in ST with
LC value

STSTO

Search f_J
Pseudo-Op Table ~ T

ype?
(POT) R

POTGET DS
DC

Not found

Determine
length of data
space required

Search
Machine-Op Table
(MOT)

MOTGET

S

Process

Update
literals P

Get length Location Counter (LC)

of instruction

LITSTO

FIGURE 3.3 Pass 1 overview: define symbols

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

Page 1

Pagez

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

becomes L 1, (0, 15). The add (A) instruction and store (ST) instruction is
assembled in the same way as the address of FOUR and TEMP is not known. Next
we have pseudo codes DC then define symbols FOUR, FIVE in the relative location
12 and 16. The DS pseudo codes then define TEMP as 1F. And the END informs the
assembler the program terminates over here. And all these codes are produced in
the centre column of the figure.

As an assembler we now need to go to the starting of the program again to fill the
offsets of the symbols define in the first pass, this is clearly shown in the third
column of the figure. Since in assembly programs the symbols are used before they
are declared so it become necessary to perform the second pass. The first pass
defines the symbols and the second pass generates the instructions. It is also
possible to have a single pass compiler there this kind of situation is not found.
Specifically the assembler must do the following.

Initialize

Search

Pseudo-Op Table
(PQT)

POTGET

CLEAN-UP
AND EXIT

| Not found Convert an
output
constants

Search
Machine-Op Table
(MOT)

Get instruction
length, type,
and binary code

available
base register

(8T)} |

Indicate
unavailable
base register
(BT)

he parts of the
instruttion

FIGURE 3.4 Pass 2 overview: evaluate fields and generate code
Foi - g

k €
AUt faaa

1. Generate instructions:
a. Evaluate the mnemonics in the operation field to produce its machine code.
b. Evaluate the subfields - find the value of each symbol, process literals, and
assign addresses.
2. Process pseudo ops.

We can group these tasks into two passes or sequential scans over the input;
associated with each task are one or more assembler modules.

Pass 1: Purpose - define symbols and literals.
1. Determine length of machine instructions (MOTGET1).
2. Keep track of Location Counter (LC).
3. Remember values of symbols until pass 2 (STSTO).
4. Process some pseudo ops, e.g. EQU, DS(POTGET1).
5. Remember literals (LITSTO).

Pass 2: Purpose - generate object programs.
1. Look up values of symbols (STGET).
2. Generate instructions (MOTGET2).
3. Generate data (for DS, DC and literals).
4. Process pseudo ops (POTGET2).

The figures represent the above steps.
DATA STRUCTURE

The second step in our design procedure is to establish the databases that we have
to work with.

Pass 1: databases:
1. Inputsource program.
2. A Location Counter (LC), used to keep track of each instruction’s location.
3. A table, the Machine-Operation Table (MOT), that indicates the symbolic
mnemonic for each instruction and its length (two, four, or six bytes).
A table, the Pseudo-Operation Table (POT), that indicates the symbolic
mnemonic and action to be taken for each pseudo-op in pass 1.
A table, the Symbol Table (ST), that is used to store each literal and its
corresponding value.
A table, the Literal Table (LT), that is used to store each literal encountered
and its corresponding assigned location.
A copy of the input to be used later by pass 2. This may be stored in a
secondary storage device, such as magnetic tape, disk, or drum, or the original
source deck may be read by the assembler a second time for pass 2.
Pass 2: databases:
1. Copy of source program input to pass 1.
2. Location Counter (LC).

S22 (oav uuw TURER), DEPT. OF INFORMATION TECHNOLOGY.

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

3. A table, the Machine Operation Table (MOT), that indicates for each
instruction: (a)Symbolic mnemonic , (b)Length, (c)Binary machine op code,

(d)Format (e.g. RS, RX, SI)

A table, the Pseudo-Operation Table (POT), that indicates for each pseudo-op
the symbolic mnemonic and the action to be taken in pass 2.
The Symbol Table (ST), prepared by passl, containing each label and its

Copy of
source deck

’
’ 4
1/ 3

Pass 1
Source f
deck &
- assembler

assembler

Pass 2
of

’M”

l
Machine-
Op Table
(MOT)

Location
Counter (LC)

|
l
|
|
|
I
|
L

Symbol
Table (ST)

Pseudo-Op
Table (POT)

,I
|
L
!
1
I
|
|l
I
)

L

—> Literal
Table (LT)

Location
Counter (LC)

Print line

Punch card

Machine-
instruction
(INST)

Pseudo-Op
Table (POT)

ase Table
(BT)

FIGURE 35 Use of data bases by assembler passes

FORMAT OF DATABASES

corresponding value.

6. A table, the Base
Table (BT), that indicates
which registers are
currently specified as base
registers by USING
pseudo-ops and what are
the specified contents of
these registers.

7. A work-space,
INST, that is used to hold
each instruction as its
various parts (e.g. binary
op-code, register field,
length field, displacement
field) are being assembled
together.

8. A
PRINT LINE,
produce a
listing.

9. A workspace,
PUNCH CARD, used prior
to actual outputting for
converting the assembled
instructions into the
format needed by the
loader.

10. An output deck of
assembled instructions in
the format needed by the
loader.

workspace,
used to
printable

Here we specify the format and content of each of the databases- a task that must be
undertaken even before describing the specific algorithm underlying the assembler
design. Actually the algorithm, databases and formats are interrelated to each other.

Pass 2 requires a Machine Operation Table (MOT) containing name, length, binary
code and formats, where as pass 1 requires only name and the length. We could use
two separate tables with different formats and contents or use the same table for

both passes;

the same is true of the Pseudo Operation Table (POT). By

generalization we can combine the MOT and POT into one table. For this particular

design we will use a single
MOT but two separate POTs.

Once we decide what
information belongs in each
database, it is necessary to
specify the format of each
entry e.g. format of storing
string may be EBCDIC or ASCII
etc. IBM 360 employs EBCDIC
for storing symbols.

The MOT and POTs are
example of fixed tables i.e. the
content of these tables are not
filled or altered during the

Mnemonic

op-code
(4-bytes)

8-bytes per entry

Instruction
length
(2-bits)

Binary
op-code
(1-byte)

Instruction
format
(3-bits)
(binary)

Not
used in
this design
(3-bits)

“Abbb"
“AHbb"
“ALbb"
ALY
oy

RIMTS

Codes:

b~represents the character “blank"

Instruction length

01

10 =

n

FIGURE 3.6 Machine-Op Table (MOT) for pass | and pass 2

= 1 half-words = 2 bytes
2 half-words = 4 bytes
= 3 half-words = 6 bytes

Instruction format
000 = RR
001 = RX

010 = RS
011 = 8
100 = s8

assembly process. The figure 3.6 depicts the possible contents and format of MOT.

The op code is the key and its
value is the binary op code
equivalent, which is stored for
use in generating machine
codes. The instruction length is
store for use in updating the
location counter; the instruction
format for used in forming the
machine language equivalent.
Figure 3.7 depicts a possible
pseudo op table. Each pseudo op
is listed with an associated
pointer to the assembler routine
for processing the pseudo op.

&—— ——Bbytesperentry —_—

Pseudo-op

(character)

FIGURE 3.7 Pscudo-Op Table (POT) for pass 1 (similar table for pass 2)

Address
of routina

(5-bytes)

to process
pseudo-0p
(3bytes = 24 bit address)

P1DROP

P1END
P1EQU

PISTART
P1USING

l —_These are presumably

labels of routines in pass
1; the table will actually
contain the physical ad-

dresses.

The Symbol Table and Literal Table (figure 3.8) include for each entry not only the
name and assembly time value field bit also a length field and a relative location
indicator. The length filed indicates the length (in

bytes) of the instruction or datum to which the symbol

COMMA

is attached. The symbol COMMA being a character has ¢

length 1, symbol F being a floating point has length 4,
AD being an add instruction has length 4 and symbols

WORD being a literal has length 4.

AD
WORD

If a symbol

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

DC
DS
A

DC

c
F

1LF
3F'6’

Page3

Page4‘

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

equivalent to another its length is made the same as that of the other. * if of length 1 | section. Here we are only

and has the address as that of current content of the LC. concerned with assembling

- the program and its Statementno.
>

specific function is PRGAM2 START 0

i i ; ; *16
Symbol Value Length Relocation irrelevant. In keeping with USING 1
(8-bytes) (4-bytes) (1-bytel (1-byte) ¢) g LA 15,
(characters) (hexadecimal) (hexadecimal) (character) the purpose of pass 1 of an i SR TOTAL, TOTAL
e assembler (define symbols AC EQU 2

“JOHNbbbL 0000 o1 R : INDEX EQU 3
“FOURbbbb" 000C 04 "R and literals), we can create TOTAL E0U a

“FIVEbbbb" 0010 04 "R" the symbols and literal DATABASE EQU 13
“TEMPbbbb " 0014 04 "R tables as shown in the

fi gure for VT. Sample Assembly Source Program (continued)

FIGURE 3.8 Symbol Table (ST) for pass 1 and pass 2 For the symbol PRGAM2, Statementno.
The relative location indicator tells th bler whether the value of the symbol s | j is i ive g G - =
e relative location indicator tells the assembler whether the value of the symboliis |jts value is its relative USING SETUP,16
absolute (does not change if the program is moved in core), or relative to the base of | |gcation. By IBM L DATABASE, = A[DATA1)
the program. If the symbol is defined by equivalence with a constant (e.g. 6) or an | convention its length is 1. ;’:'”G :’N“DT:XA?;SEQATABASE
absolute symbol then it is | We update the location L AC, DATA1 (INDEX)
€ 4bytes per entry ———> absolute “A”, otherwise it | counter, noting that the LA QR Ing ::;'\c
is relative “R". instruction of 4B long and ST AC. SAVE (INDEX)
the SR is two. Continuing, A INDEX, = F‘4

: ' c INDEX, = F'8000’
we find that the next five BNE LOOP

symbols are defined by LR 1, TOTAL

BR 14
pseudo op EQU. These e

symbols are entered into SAVE DS 2000F

the ST and the associated DATAAREA EQU =

DATA1 DC F'25,26,97, 101
(2000 numbers)

Sample Assembly Source Program

14-bytes per entry

Availability Designated relative-address
indicator Contents of base register Figure 3.9 depicts a

(1-byte) (3‘bvte; ’ 34'?“5“)""’95"’ possible base table that is
(character) S— T used by the assembler to

generate the proper base
register reference in

15 machine instructions and . "
entries values given in the

N to compute the correct)
l offsets. The assembler | argument fields of the EQU _ _ END _ o
statement are entered. The LC is further updated noting that the L instruction is 4B

must generate an address)
Code= (offset, base register and the SR is 2B. (None Variable Tables
of the pseudo ops

o number, index register
Availability 8 encounter affects the LC

numbet) for most they d t It Symbol Relocation

pseudo-op symbolic references. The isrllnacr? ogyectoc:c;)e) rf;;‘:ls St

N ~ register never specified in USING ST contains the address of 1 t.y) ter h AC
pseudo-op or subsequently made the symbol relative to the | '0€ation counter has a INDEX

unavailable by the DROP beginning of the program. | Value 12 when LOOP is E?J'::EAS
pseudo-op While doing so the encountered. There for E

N s
N -

e

Symbad Table

Y ~ register specified in USING

)) SETUP
LOOP is entered into the LOOP

assembler use the BT to i |

choose a base register that | ST With a value 12. It is a SDiniAREA
will contain a value closest to the symbolic reference. The address is then re-locatable v.arlabl.e and DATA1
formulated as Base register number = the base register containing a values closest | S° not.ed and is of size 4B g

to the symbolic reference and Offset= (value of the symbol in ST) - (content of the | 35 lt_ dengtes an HASEENES
base register) it the address is “A”. instruction of size 4B. All A(DATA1)
other symbols are o

The following program is used to illustrate the use of the variable table (ST, LT and | entered in this manner. :goou
BT) are to demonstrate the motivation for the algorithms presented in the next

FIGURE 3.9 Base Table (BT) for pass 2

IIJIIDIPP>PP>D

P N N]

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

In the same pass all literals are recognized and entered into literal table. The first
literal is in statement 11 and its value is the address of the location that will contain
the literal. Since this is the first literal, it will have the first address of the literal area.
The LTORG pseudo op (statement 23) forces the literal table to be placed there,
where the LC is updated to the next double word boundary which equals 48. Thus
the value of ‘=A(DATA1)’ is its address, 48. Similarly, the value of the literal F’'5’ is

Generated “machine” code

Corresponding

statement no, Location Instruction/datum

the next location in the
literal table, 52 and so on.

The LT and ST being
completed, we may initiate
pass, whose purpose is to
evaluate arguments and
generate code. To generate
proper address in an
instruction, we need to
know the base register. The
assembler of course does
not know the execution
time value of the base
register, but it does know

Base tabfe (showing only base regis:er; in use)

1) After statement 2:
base
15
2) After statement 10:
base
15
3] After statement 12:
base
13

conrents

8064
the value relative to the 15 6

start of the program,

therefore, the assembler enters as “contents” its relative value. This value is used to
compare the offset. Processing the USING pseudo-ops produces the BT shown
above.

For each instruction in pass 2, we create the equivalent machine language
instruction as shown below. For example, for statement 3 we:

1. Lookup value of SETUP in symbol table (which is 6).
2. Look up value of op code in MOT (binary op code for LA)
3. Formulate address

a. Determine base register —pick one that has content closest to
value of SETUP (register 15)

b. Offset = value of symbol - content of base register = 6 - 0 = 6.
c. Formulate address: offset(index register, base register) = 6(0,15).
4. Average output code in appropriate formula.

Similarly we generate instructions for the remaining code as shown below:

3

4
11
13
14
15
16
17
18
19
20
21
22
23

Corresponding
statement no,

24

26

ALGORITHM

LA

SR

L

SR

L

AR

A

ST

A

c

BC

LR

BCR

8064
X'00000005°
X*00000004'
8000

Generated “machine™ code Ioontl]!uedi

Location
&4

X"00000019"

15,6 (0,15)
44

13,42 (0,15)
33
2,0(313)
42

2,46 (0,15)
2,58 (3,15)
3,50 (0,15)
3,54 (0,15)
7.6 (0,15)
14

15,14

Instruction/detum

The flowchart in the figure 3.10 and 3.11 describe in some detail an algorithm for
an assembler for an IBM 360 computer. These diagrams represent a simplification
of the operations performed in a complex assembler but they illustrate most of the
logical processes involved.

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

Page 5

Page6

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

Pass 1: DEFINE SYMBOLS

The purpose of the first pass is to assign a location to each instruction and data
defining pseudo-instruction, and this to define vales for symbols appearing in the
label fields of the source program. Initially, the LC is set to the first location in the
program (relative address 0). Then a source statement is read. The operation code
field is examined to determine if it is a pseudo op; if it is not, the table of MOT is
searched to find a match for the source statement’s op code field. The matched
MOT entry specifies the length (2,4 or 6 B) of the instruction. The operand field is
scanned for the presence of a literal. If new literal is found, it is entered into the LT
for later processing. The label field of the source statement is then examined for
the presence of a symbol. If there is a label, the symbol is saved in ST along with the
current value of the LC. Finally, the current value of the LC is incremented by the
length of the instruction and a copy of the source code is saved for use by pass 2.
The above sequence is then repeated for the next instruction.

The loop described is physically a small portion of pass 1 even though it is the most
important function. The largest sections of pass 1 and pass 2 are devoted to the
special processing needed for the various pseudo operations. For simplicity, only a
few major pseudo operations are explicitly indicated in the flowchart; the others
are processed in a straightforward manner.

We now consider what must be done to process a pseudo op. the simplest
procedure occurs for USING and DROP. Pass 1 is only concerned with pseudo-ops
that define symbols (labels) or affect the LC; USING and DROP do neither, the
assembler need only save the USING and DROP cards for pass 2.

In the case of the EQU pseudo op during pass 1, we are concerned only with
defining the symbol in the label field. This requires evaluating the expression in the
operand field. (The symbols in the operand field of an EQU statement must have
been defined previously.)

The DS and DC pseudo ops can affect both the LC and the definition of symbols in
pass 1. The operand field must be examined to determine the number of bytes of
storage required. Due to requirements for certain alignment conditions (e.g. full
words must start on a byte whose address is a multiple of four), it may be
necessary to adjust the LC before defining the symbol.

When the END pseudo op is encountered, pass 1 is terminated. Before transferring
control to pass 2, there are various “housekeeping” operations that must be
performed. These include assigning locations to literals that have been collected
during pass 1, a procedure that is very similar to that for the DC pseudo op. Finally,
conditions reinitialized for processing by pass 2.

Pass 2: GENERATE CODE

After all the symbols have been defined by pass 1, it is possible to finish the
assembly by processing each card and determining values for its op code and its
operand field. In addition, pass 2 must structure the generated code into the

Read card

READ1

)

Search
pseudo-op table

Found

POTGET1
: \L Not found

Search
machine-op table

MOTGET

I

L « length
W/

Which

one? DS

Process any literals,
enter into literal
table

LTSTO

DC

Adjust LC
to proper
alignment

L « length
of data field

Evaluate
operand
field

EVAL

DLENGTH

Is
there sym-

bol in label
fie%fd

Assign value
to symbol in
label field

STSTO

Assign current
value of LC to
symbol

STSTO

tiC«LC+L

v

Write copy of card
on file for use by
pass 2

USING

prop [END

Assign stor-
age locations
to literals

LITASS

Rewind
and
reset copy
file

WRITE1

[

———

FIGURE 3.10 Detailed pass 1 flowchart

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

appropriate format for later processing by the loader, and print an assembly listing
containing the original source and the hexadecimal equivalent of the bytes
generated. The LC is initialized as in pass 1, and the processing continues as
follows.

A card is read form the source file left by pass 1. As in pass 1, the op code field is
examined to determine if it is a pseudo op; if it is not, the MOT is searched to find a
match for the card’s op code field. The matching MOT entry specifies the length,
binary op code, and the format type of the instruction. The operand fields of the
different instruction format types require somewhat different processing.

For the RR- format instructions, each of the two register specification field is
evaluated. This evaluation may be very simple, as in: AR2,3 or more
complex, as in : MR EVEN, EVEN+1

The two fields are inserted into their respective four bit fields in the second byte of
the RR instruction,

For RX format instruction, the register and index fields are evaluated and
processed in the same way as the register specifications for RR format instructions,
the storage address operand is evaluated to generate an Effective Address (EA).
Then the BT must be examined to find a suitable base register (B) such that D=EA-
c(B)<4096. The corresponding displacement can be determined. The 4 bit base
register specification and 12 bit displacement field are then assembled into the
third and fourth bytes of the instruction. Only the RR and RX instruction type are
explicitly shown in the flowchart, the other instruction formats are handled
similarly.

After the instruction has been assembled, it is put into the necessary format for
later processing by the loader. Typically, several instructions are placed on single
card. A listing line containing a copy of the source card, its assigned storage
location, and its hexadecimal representation is then printed. Finally, the LC is
incremented and processing is continued with the next card.

As in pass 1, each of the pseudo ops call for special processing. The EQU pseudo op
requires very little processing in pass 2, because symbol definition was completed
in pass 1. It is necessary only to print the EQU card as [art of the printed listing.

The USING and DROP pseudo ops, which were largely ignored in pass 1, require
additional processing in pass 2. The operand fields of the pseudo ops are evaluated
then the corresponding BT entry is either marked as available, if USING, or
unavailable, if DROP. The BT is used extensively in pass 2 to compute the base and
displacement fields for machine instructions with storage operands.

The DS and DC pseudo ops are processed essentially as in pass 1. In pass 2,
however, actual code must be generated for the DC pseudo op. depending upon the
data types specified, this involves various conversions (e.g. floating point character
to binary representation) and symbol evaluations (e.g. address constants).

The END pseudo ops indicate the end of the source program and terminates the
assembly. Various “housekeeping” tasks must be generated for any literal
remaining on the LT.

Pass 2

|
LIC <0

Read card
m file cop

READ2

Found
Which
one?

Search

DROP
USING

Evaluate
operand

EVAL
X

EQU
START

table
POTGET2

Not found |
arc ‘

machine-op
table
MOTGET @ Dec
Get op-code
byte and DS into base
format code, L « length table

of data field BTSTO
Type of
RS instruction

DLENGTH ¥
Print liging
PRINT
1 valuate both reg-
| ister expressions
‘| andinsertinto
insert into 2nd byte

2nd byte é
EVAL

EVAL
M Gerierate literals
Calculate effective fqr entries in
address (EA) of operand| Literal Table

L A LTGEN

: v v 1
:' + F"Print” assembly Determine appropriat STOP
3 @) listing line displacement and ba:
. | PRINT register D+C(B) = EA
BTGET
WV

Put B&D into
bytes 3and 4

Adjust LC
to proper
alignment

Indicate
base reg.
no. un-
available
BTDROP

Form constant
and insert in
assembled
program
DCGEN

Enter base

reg. no.
and value

Evaluate register and
index expressions and

c«LC + L|

3.11 Detailed pass 2 flowchart

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

Page7

Page8

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

LOOK FOR MODULARITY

We now review our design, looking for functions that can be isolated. Typically,
such functions fall into two categories 1. Multi user and, 2. Unique.

In the flowchart for pass 1 and pass 2, we examine each step as a candidate for
logical separation. Likely choices are identified in the flowcharts by the shapes
where “name” is the name assigned to the function (e.g. MOTGET, EVAL, PRINT).

Listed below are some of the functions that may be isolated in the two passes
PASS 1

1. READ1 Read the next assembly source card.

POTGET1 Search the pass 1 POT for a match with the operation field of the

current source card.

MOTGET1 Search the MOT for a match with the operation of the current source

card.

STSTO Store a label and its associated value into the ST. if the symbol is

already in the table, return error indication (multiply defined symbols)

LTSTO Store the literal into the LT; donot store the same literal twice.

WRITE1 Write a copy of the assembly source card on a storage device for use by

pass 2.

DLENGTH Scan operand fields of DC or DC pseudo op to determine the amount of

storage required.

EVAL Evaluate an arithmetic expression consisting of constants and symbols

(e.g. ALPHA, 6, GAMMA etc)

STGET Search the ST for the entry corresponding to a specific symbol (used by

STSTO and EVAL).

LITASS Assign storage location to each literal in the literal table (may use

DLENGTH).

READ2 Reads the next assembly source card form the file copy.

POTGET2 Similar to POTGET1 (search POT)

MOTGET2 Same as in pass 1 (Search MOT)

EVAL Same as in pass 1 (evaluate expressions)

PUNCH Convert generated instruction to card format; punch card when it is

filled with data

PRINT Converts relative location and generate code to character format: print

the line along with copy of the same source card.

DCGEN Process the field of the DC pseudo to generate object code (uses EVAL

and PUNCH)

DLENGTH Same as pass 1

9 BTSTO Insert data into appropriate entry of BT

10 BTDROP Insert “unavailable” indicator into appropriate entry of BT

11. BTGET Converts effective address into base and displacement by searching BT

for available registers.

12. LTGEN - Generate code for the literal (use DCGEN)

TABLE PROCESSING: SEARCHING AND SORTING

As it is clear from the above discussion, in the process of assembling a code written
in assembly language involves a frequent use of a number of tables. A huge amount
of table processing activities are involved in an assembler that basically deals with
searching and sorting. Hence we should be well aware with the techniques that are
employed for searching and sorting.

SEARCHING A TABLE

The symbols or data needed to be searched by the assembler whenever they are
referred. Generally a keyword or key is given and the search for the appropriate
item is done in the respective table. Basically linear and binary search are employed
for searching.

LINEAR SEARCH

Linear search is basically used when the table is unsorted. Here the key is
compared with entries of the table from the first to the nth item. Linear search is
also called as brute search. Let Ti. be the time required to find the item in the last
location in the table, then the average time to search an item it T./2. Hence its
complexity is of O(n).

BINARY SEARCH

Binary search is basically employed to a table with sorted key values. Here in each
comparison the list is reduced to half. A item to be searched is compared with the
middle item of the table. This lead to the following outcome:

e Item equal to the middle element: Here the item is found and the

corresponding record is returned.

Item more than the middle element: Here the item is searched in the lower

half of the table.

Item less than the middle element:
half of the table.

Here the item is searched in the upper

This process continues till the item search succeeds or fails. The searched list gets
reduced each and every time so the average time taken in this case to search an
item in the table is O(log(n)). Hence this search is much faster than the linear
search but subject to constraint that the input list or table is a sorted one.

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

SORTING A TABLE

Basically the tables i.e. MOT, POT, etc that are generated in the assembling process
are not sorted. So when we use think of applying binary search to these tables they
needs to be sorted first. For this we have a number of techniques as follows:

INTERCHANGE SORT

Interchange sort is otherwise called as bubble sort or sinking sort or shifting sort.
The sorting process involves an interchange of adjacent pair of elements and put
them in order. Let us take an example and explain the sorting techniques. Let the
list of number (keys) be 19, 13, 05, 27, 01, 26, 31, 16, 02, 09, 11 and 21. Then these
are sorted as follows:

Unsorted

1st pass

2nd pass 3rd pass 4t pass 5th pass 6th pass 7th pass

List

19) 01 01
<13 Og) 02

05 (19 13 13 13 0z 05

27 01 19 19 16 02 09 09
<01 26 26 16 02 <0§ 11 11

26 27 16 0 0 1 13 13

31 16 02 0 1t 16 16 16
16 02 0 11 19 19 19 19
02 09 1T 21 21 21 21 21
09: 11 21 26 26 26 26 26
11 21 27 27 27 27 27 27
21 31 31 31 31 31 31 31

(13) 05 05 01 01
05 (13 01 05 05
01

In each of these pass, elements are fixed to the last of the list. From the example 31,
27,26, 21, 19, 16 respectively are fixed in pass 1, 2, 3,4 and 5. Such a sort requires
N*(N-1)/2 comparisons and thus would take time roughly proportional to N2. We
would like to have sorting algorithms that has time better than this. Basically,
sorting can be divided into three categories that are as follows:

Distributive: Here the keys are checked digit wise.
Comparative: Here the two keys are compared.

Address calculation: Here the key is transformed to an address, where the item
is closed to end up.

SHELL SORT

This is kind of comparative sort that compare two numbers d distance apart, where
d is the length of the list. In pass the distance d is updated as (d+1)/2 and the
comparison and exchange process continues till a sorted list is obtained then value
of d turns to be 1. This sorting take log.d passes and since in each step it reduces
the d to half, so it has a complexity equal to N*(logzN)?. The process can be clearly
understood from the example given below.

1st pass 2rd pass 3rd pass

(d2=3) (d2=2)

*09 *02 01
I *01 I 01

th
Unsorted List 4t pass

02 *09
*19 *05
**11 11
*05 **13
*27 **16
**13 *19
*31 *26
*16 *27
26 *31

BUCKET SORT

One of the simplest type of distributed sort is radix sort or bucket sort. It involves
examining of the least significant digit of the keys first, and the same is assigned to
as bucket uniquely dependent on the value of the digit. After the items have been
distributed into buckets, they are merged in order and then the process is repeated
until no more digits are left. A number with a base requires p buckets. Although
this sorting is faster but suffers from serious disadvantages that are as follows:

1. Itinvolves two processes, a separation and a merge.

2. Itrequires a lot of extra storage for the buckets. This can be overcome chaining
records within a logical record rather than predefining maximum size to
bucket.

The process can be clear from the example given below.

Pass 2
Distribution

Pass 1

Unsorted List Distribution

0) 0)01,02,05,09
1)01,31,11,21 1)11,13,16,19
2)02 2)21,26,27
3)13

4)

5)05

6)26,16

7)27

8)

9)19,09

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

Page9

Page 1 O

RADIX EXCHANGE SORT

A A&
S - o9
O =00 =909=
(== - - |
SOoOSOoOD===

(=
-
=]
=]
=]

010 11

o0 11

LECTURE NOTES ON SYSTEM PROGRAMMING (ASSEMBLER)

Radix exchange sort can only be applied to table
that key values in binary. The ordering is done
by taking groups with M common bits and
ordering that group with respect to M+1 bits.
The process of sorting actually involves
comparing the leftmost bit in the list and then
dividing the list into two by performing a
number of exchanges of 1 that is near the top
and a zero that is near the bottom. And after this
division the two sub lists are sorted in a similar
manner till all the keys are ordered. The
number of passed required to finish the sorting
process is equal to the number of digits in the
keys. Here for the given example the number of
passes is 5, since the number of digits in the
keys is 5.

The complexity of the radix exchange sort is
N*log(N) as compared to bucket sort that is
N*logp(N).

ADDRESS CALCULATION SORT

This sorting is very fast if there is enough
storage space. To sort by address calculation we
require a space that is sufficiently more than the
size of the list to be sorted. Here we need to find
a factor that will be helping us in calculation the
address. This factor=ceiling(Max
element/number of item in the list). In our
example we have factor=ceiling(31/12)=6. The
table where the number is to stored is labeled
form 0 to n-1. Then the address is calculated by
dividing the input number by the factor and the
item is inserted in the found place if it empty. If
it is not empty then elements in the table next to
address are pushed down the table to a vacant
location there by creating space for the new
item.

Data
number

unordered

10

11

12

and Data

09

11

21

unpacked
list, still we

Calculated
address

3

3

7

get faster

01

01

01

01

results.

[02

02

02

02

05

05

05

05

Here we

09

09

09

define the

13 | 13

13

13

11

11

size of the

16

16

16

13

13

table. In our

19 | 19

19

19

16

16

example it

19

19

is 17. The

26 | 26

26

26

26

21

OR[NV | W(N|=S

27 | 27

27

27

27

26

item to be

31 | 31

31

31

31

27

ol
=

searched is

Y

y 31

divided by

17 and the remainder
gives the location
where the item is to be
searched or stored. It
the address generated
is not empty then the
item is place in the next
place that may be
immediate or after
some location. Now
when we think of
searching an item in
this table, we call this
as a probe. If the item is
stored at the calculated

Positions

Probes to find

Probes to find not

OO UTLA WD RO

11
13
31

16

1

16

E'SHHNUJ-PWON\]HHHNUJ-PWO\H

address then the probe is 1 else it is equals to the number of spaces below its
position where it was stored. Similarly the probes not to find an element are
number of probes for finding an empty space. We have
(Probes to search)

Te=1-(p/2)(1/(1-p))

(Probes to not to find) Also T, = Probes to store

Te=(1/(1-p))
COMPARISON OF SORTS

HASH OR RANDOM ENTRY SEARCHING

Type

Average time (approx)

Extra storage (wasted space)

A*N?

None

Interchange

Shell

Radix

Radix exchange
Address calculation

It not always that for faster searching we need
to sort the list so that we can apply binary
search. Here the data or keys are also packed
(no spaces between the data).

B*N*(logz(N))?
C*N*log,(N)
D*N*log,(N)

E*N

None
N*p
k+1

2.2*N

We can also apply hash search to an

BY- KISHORE KUMAR SAHU (SR. LECTURER), DEPT. OF INFORMATION TECHNOLOGY.

