- What are the fuzzy Inference Systems (FIS)?
 Formulate a problem that you know to derive inference through fuzzy systems.
- 7. Given two Fuzzy Relations R = x1 $\begin{pmatrix} 0.7 & 0.5 \\ x2 & 0.8 & 0.4 \end{pmatrix}$

$$S = y1 \begin{pmatrix} 0.9 & 0.6 & 0.2 \\ y2 & 0.1 & 0.7 & 0.5 \end{pmatrix}$$

Find $T = R \times S$ using max-product decompositions.

- 8. (a) If the activation function of all hidden unit is linear, show that a MLP is equivalent to a single layer Perception.
 - (b) What are the advantages of a sigmoid function as the activation function over a hard limiting function?

Total number of printed pages – 8 B. Tech
PECS 3401

Seventh Semester Examination - 2006

SOFT COMPUTING

Full Marks - 70

Time: 3 Hours

Answer the Questions from either Set A or Set B (not from both the sets).

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Set-A

- Answer the following questions: 2×10
 - (a) How does an ANN differs from biological neuron?
 - (b) What are the different activation functions used in ANN?
 - (c) State different learning methods of ANN.
 - (d) Sketch a 3-4-5-2 neural network.
 - (e) Distinguish between ADALINE and MADALINE.
 - (f) Write the weight update equation of a back propagation algorithm.
 - (g) Distinguish between fuzzy and probability with example.
 - (h) Differentiate between mutation and crossover operator.

- (i) When GAs are preferred?
- (j) What are the benefits of GA?
- (a) Find the input u to the perception activation function for the following input vectors x and weight vectors w:
 5
 - (i) $x = [-1, 0, 2]^T$ $w = [-1, -3, 2, -5]^T$
 - (ii) $x = [-1, 0, 2, 4]^T$ $w = [-1, -3, 2, -5]^T$
- (b) Find the output using the activation function as defined for the 3-3 neural network with given input x = [3, 0, 1] and

$$W = \begin{bmatrix} 3 & -1 & 1 \\ 1 & -2 & -2 \\ -1 & 0 & -3 \end{bmatrix}, output = \begin{bmatrix} -1, & u < 0 \\ 1, & u > 0 \end{bmatrix}$$

3. Derive the back propagation algorithm for 2-3-1 neural network with the activation

function
$$\frac{1}{1 + e^{-x}}$$
.

PECS 3401

Contd.

- 4. Find the output \mathbf{u} from the network with input $\mathbf{x} = [-1, 2]^T$ $\mathbf{w} = [-1, 2]$ with activation function in hidden layer as:
 - (i) Unipolar activation function
 - (ii) Bipolar sigmoidal function.
- 5. Two fuzzy relations are given as: 10 1.0 0.0 1.0

0.3 0.0 0.7 0.3

0 0.5 0.4

R1 = 0.0 1.0 0.2 0.0 and R2 = 0.7 0.9 0.6

0 0 0

Find:

- (a) Max-Min composition
- (b) Max-Prod composition
- (c) Max-Average composition of two relations.
- 6. Two fuzzy sets are given as:

10

 $A = \{0.4/2, 0.6/3, 0.8/4, 1/5, 0.8/6, 0.6/7, 0.4/8\}$

 $B = \{0.4/2, 0.8/4, 1/5, 0.6/7\}$

PECS 3401

Contd.

Find:

- intersection of A and B by applying three different T-norms.
- (ii) Union
- (iii) Difference.
- (a) What is a fuzzy inference system? Thus define the followings with examples: 5
 - (i) generalized modus ponens
 - (ii) generalized modus tollens.
 - (b) What do you mean by defuzzyfication? Duscuss different methods of defuzzification.
 - (a) Write the algorithm for a simple Genetic algorithm. 5
 - (b) Following non-linear problems needs to be solved by GA. It is decided to give three and two decimal places of accuracy to variables x₁ and x₂ respectively.
 - (i) How many bits are required for coding the variables?

5

P.T.O.

PECS 3401

8.

(ii) What will be the fitness function?

Minimize
$$(x_1 - 2.5)^2 + (x_2 - 5)^2$$

Such that $5.5x_1 + 2x_2^2 - 18 \le 0$
 $0 \le x_1, x_2 \le 5$.

Set - B

1. Answer briefly:

2×10

- (a) Specify the components of Soft Computing techniques.
- (b) What are the different learning methods of NN?
- (c) Distinguish between Fuzzy and Probability theory.
- (d) State different models of NN.
- (e) Why learning is essential for a NN with nonlinear units?
 - (f) What is the significance of momentum term in BP learning?

- (g) Why LMS algorithm is called as stochastic gradient descent method?
- * (h) Why BP algorithm is called generalized delta rule?
- (i) Explain the limitations of BP learning.
 - (j) Distinguish between fixed and adaptive crossover operator.
- Derive the Back Propagation algorithm for a FLANN structure with 2-inputs and 1-output, where the inputs are expanded to x, cos (pi*x), sin (pi*x).
- (a) Distinguish between MLP and RBF NN with their relative merits and demerits.
- (b) Specify different Properties of NN. 5
 What are genetic Algorithms (GAs)? Specify the steps followed in GAs. Illustrate the steps with a suitable example.
- Given A = {1/2 + 0.5/3 + 0.3/4 + 0.2/5},
 B = {0.5/2 + 0.7/3 + 0.2/4 + 0.4/5}
 Find A', B', A V B, A B, A | B, A' A, B' B.
 10

PECS 3401

6

Contd.

PECS 3401

7

P.T.O.