AS PER THE SYLLABUS OF BPUT FOR SEVENTH SEMESTER OF AE&IE BRANCH.

RIT,

ettt OOFT COMPUTING (PECS 3401)- NEURAL NETWORKS

Lecture Notes | KISHORE KUMAR SAHU

LECTURE NOTES ON SOFT COMPUTING P age |2

CHAPTER-04

NEURAL NETWORKS FUNDAMENTAL
INTRODUCTION
Neural networks are simplified models of biological neuron systems that have the
ability to learn and acquire the knowledge and make it available for future use.

BIOLOGICAL NEURON

The basic unit of neuron
systems is a neuron. The
components of a neuron are
as follows:

Dendrites

Synapse

i. Dendrite (Synapse)

They act as the i/p channels Cell body (soma)
to the neuron. They are

responsible to feed the inputs to the neurons form the neighbouring neurons.

il Cell body (Soma)

They are the heart of neuron system. They are responsible to process or
manipulate the inputs received from the synapses.

iil. Axon

They act as the o/p channel for the neuron. They are responsible for giving outputs
to the neighbouring neurons.

ARTIFICIAL NEURON MODEL
They are the models that are
inspired form the biological
neurons. The components of _
artificial neuron networks (ANN) *
are similar to that of biological
neuron.

SUMMATION UNIT

Weights

Thresholding output

J

THRESHOLDING UNIT

o Summation of

Inputs weighted inputs

¥n

i. Inputs

They are responsible for receiving inputs i.e. X1, X2, ..., Xnand summing up then get
the final input to the activation functions. The input to the neuron is the sum of the
weighed inputs i.e. I = wyxy + WXy + - + WX, = iy Wix;.

ii. Activation Function

They are responsible for checking whether the input signal is to sent to output of
not. This is possible due to a threshold value present in the activation unit with
which the inputs are always checked. If the inputs exceed the threshold value, then
the input is propagated to the output other not

Le.y =0() = 0L, wix; — 0) = {;::g

ili. Outputs

They are responsible for receiving the output from the activation functions
depending on the decision taken by the activation function.

ARCHITECTURE OF NEURAL NETWORKS

An artificial neural networks is defined as a data processing system consisting of a
large number of simple highly interconnected processing elements (ANN) is an
architecture inspired by the structure of the cerebral cortex of the brain. Generally,
an ANN structure can be represented using a directed graph. Since the flow of
signals in always restricted in one direction only so we make use of directed
graphs, where the vertices represents neurons, and the edges represents the
synaptic links. Broadly there are three classes of neural networks as follows.

i. Single layer feed-forward networks

This type of networks
comprises of two
layers, namely the
input and output layer.
The input layers
receive the input signal
and the output layers
receive the output
signals. The synaptic
links carrying the

w; . Weights

Input neurons

Qutput neurons

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

;¢ Input neurons
¥;: Output neurons

LECTURE NOTES ON SOFT COMPUTING P age |3

weights connect the every input layer to the output neuron but not vice-versa.
Such a networks is said to be feed-forward in type or acyclic in nature. Despite two
layer the network is called as single layer as it is the output layer alone that
performs the computation. The input layer just pass the signals to output layer.

ii. Multi layer feed-forward networks

This architecture is
called as multi
layer NN due to the
presence of a

X; : Input neurons
¥ : Hidden neurons
2, : Output neurcns

number of v; : Input hidden

intermediate layer weights
] hidd

layers called as " la:::mwelgh;‘

hidden layer. The
unit of hidden
layer is called as
hidden neurons or
hidden units. These hidden layer are responsible for performing the processing of
input signals along with the output layer. They are connected with input layer with
weight called as input-hidden layer weight and connect with output layer with
hidden-output layer weight. If a multi-layered NN is having 3 input neuron, 5
hidden neuron in one layer and in the other, and 2 in the output layer. Then this
multi layered neural is represented as 3-5-4-2.

Hidden layer

Input layer Output layer

iii. Recurrent networks

7‘.—5 Feedback fink
/>

~

Networks in this class has at least one
feedback loop. This is what make them
different from other networks. It is
also possible that the neurons will also

have a self loop i.e. feed back into itself.

LEARNING METHODS
Leaning methods in Neural Networks can be broadly classified into three basic
types: supervised, unsupervised and reinforced.

i

ii.

il.

Li.

Supervised Learning: In this, every input pattern that is used to train the
network is associated with an output pattern, which is the target or the
desired pattern. A teacher is assumed to be present during the learning
process, when a comparison is made between the network's computed output
and the correct expected output, to determine the error. The error can then
be used to change network parameters, which result in an improvement in
performance.
Gradient descent learning: This is based on the minimization of error E
defined in terms of weights and the activation function of the network. Also,
it is required that the activation function employed by the network is
differentiable, as the weight update is dependent on the gradient of the
error E. Thus, if AW;;is the weight update of the link connecting the ith and

E -, where 7) is the

jth neuron of the two neighbouring layers, then AW;; = 7 667
ij

. 9E . . .
leaning rate parameter and SIS the error gradient with reference to the
i

weight W;;

i.ii. Stochastic learning: In this method, weights are adjusted in a probabilistic

fashion. An example is evident in simulated annealing-the learning
mechanism employed by Boltzmann and Cauchy machines, which are a kind
of NN systems.
Unsupervised Learning: in this learning method, the target output is not
present to the network. It is as if there is no teacher to present the desired
patterns and hence, the system learns of its own by discovering and adapting
to structural features in the input patterns.

ii.i. Hebbian learning: It is based on correlative weight adjustment. This is the

oldest leaning mechanism inspired by biology. In this, the input-output
pattern pair (X; Y;) are associated b the weight matrix W, known as the
correlation matrix. It is computed as W = ¥ X,Y;". HereY;” is the
transpose of associated output vector Yi.

ii.ii. Competitive Learning: In this method, those neurons which respond

strongly to input stimuli have their weights updated. When an input pattern

is presented, all neurons in the layer compete and the winning neurons

undergoes weight adjustment. Hence, it is a "winner-takes-all" stratergy.
Reinforced Learning: In this method, a teacher though available, does not
present the expected answer but only indicated if the computed output is
correct or incorrect. The information provided helps the network in its

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |4

learning process. A reward is given for a correct answer computed and a
penalty for a wrong answer. But, reinforced learning is not one of the popular

forms of learning.
Neural Network Learning
aigorithms

upervised Learning
Ermror based

v

v K’
Coscoropmoason >

CHARACTERISTICS OF NEURAL NETWORKS
i. The NNs exhibit mapping capabilities, that is, they can map input pattern to
their associated output patterns.

ii. The NNs learn by examples. Thus, NN architecture can be trained with known
examples of a problem before they are tested for their inference capability on
unknown instance of the problem. They can identify new objects previously
untrained.

iii. The NNs possess the capability to generalize. This they can predict new
outcomes form past trends.

iv. The NNs are robust systems and are fault tolerant. They therefore, recall full
patterns form incomplete, partial or noisy patterns.

v. The NNs can process information in parallel, at high speed, and in a
distributed manner.

SOME APPLICATION DOMAINS

Neural networks have successfully applied for the solution of a variety of
problems. Some of them of are listed below:

i. Pattern recognition (PR)/image processing:

Neural networks have shown remarkable progress in the recognition of visual
images, handwritten characters, printed characters, speech and other PR based
tasks.

ii. Optimization/ constrain satisfaction:

This comprises problems which need to satisfy constraints and obtain optimal
solutions. Examples of such problems include manufacturing scheduling, finding
the shortest possible tour given a set of cities, etc. Several problems of this nature
arising out of industrial and manufacturing fields have found acceptable solutions
using NNs.

iii. Forecasting and risk assessment:

Neural networks have exhibited the capability to predict situation from past
trends. They have, therefore, found ample applications in areas such as
meteorology, stock market, banking, and econometrics with high success rates.

iv. Control systems:

Neural networks have gained commercial ground by finding applications in control
systems. Dozens of computer products, especially, by the Japanese companies
incorporating NN technology, is a standing example. Besides they have also been
used for the control of chemical plants, robots and so on.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |5

CHAPTER-05 Type Equation Functional form

BACKPROPAGATION NETWORKS

Linear 0=zl o
&= lan ¢
ACTIVATION FUNCTIONS [
To generate the final output y, the sum input (I =w;x; + wyx, + -+ wpx, =
Y-, wix;.) is passed on to a non-linear filter ¢ called activation function/ transfer
function/ squash function which releases the output. i.e. y = ¢(I). 1
A very commonly used activation function is the Thresholding function. In this, the Phecewise I if mi>]
sum is compared with a threshold value 8. If the value of I is greater that 8, then Langar O= gl if |mi<i
the output is 1 else it is 0. i.e.y = ¢ 1=, w;x; — 0), where, ¢ is the step function =1 ¥ wmi>=1 -1
known as Heaviside function and is such thaty = @(I) = {S’II : g
3 1
Si ti
ignum function Hard
+1,1>6 Limiter SminuiL) e

Also known as the quantizer function, defined as y = @(1) = {_1'1 <9

—_ 1

Sigmoidal function

This function is a continuous function that varies gradually between the

asymptotic values 0 and 1 or -1 and +1 is given by: () = ﬁ Where a is the ;’“h’d_' o= I
(1 + exp(—Al)

slope parameter, which adjust the abruptness of the function as it changes
between the two asymptotic values. Sigmoidal functions are differentiable, which
is an important feature of NN theory.

Hyperbolic tangent function
Bipolar
The function is given by @(I) = tanh (I) and can produce negative outputs values. Sigmoidal

0 = tanh [A1]

The other activation functions are Radial Basis function, Unipolar Multimodal,
Piecewise Linear, Hard Limiter, Unipolar Sigmoidal and Bipolar Sigmoidal.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

Unipolar Multimadal

Radial Basis Function

(RBF)

LECTURE NOTES ON SOFT COMPUTING P age |6

il 1 e
0= z[1+-- ¥ tanh (g™ (s - W3

X
3

& = expih +

L
- 3 (W) = X 0F

=1
I'm - =
2a”

SINGLE LAYER PERCEPTRON

A single layer perceptron consists of Bias

a input layer and a output layer. Here =~ =1

we have a perceptron with two input

x3, and x; as inputs with weights w;, ——
and w;and a bias xowith weight wy.

Xy w.

- net = wo + Wiy + WaXy

W,
The output of the perceptron is "j—*O/

calculated as the sum of weighted

inputs and bias i.e. net= wy + wix;+ wzxz. This represents the equation of a straight

line, which makes clear that single layer perceptron are responsible of
representing problems that are linearly separable. Since logic gates corresponds to
problems that are linearly separable, hence can be easily simulated by single layer

perceptron.

Table 2.3 XOR truth table

Inputs

Inputs

Output

0

o

[

1
0
1

1
1
0

0
[
1

5
S
] .
Odd parity
—
{(a) Linearly separable patterns {b) Non-linearly separable patterns

Algorithm for training a single layer perceptron

Step 1. Initialize the weights and bias to zero. Also set the learning rate « in
between 0-1.
Step 2. While stopping condition fails do steps-3 to step-7.
Step 3. For each training pair do step-4 to step-6.
Step 4. Set the activation of i/p.
Step 5. Compute the net i/p to the activation function y;, = b + Qi w;x;).
Activation function is used to compute the o/p yi = f(yin) =
{+1,ym >0
1Ly, <0°
Step 6. If o/p and target are not equal then change the weights and bias as
follows: w;(new) = w;(old) + aTyx; and b;(new) = b;(old) + aTy .
else w;(new) =
w;(old) and b;(new) = b;(old).
Step 7. Test for stopping condition.
X1 X2 T
. . -1 -1] -1
Example: Train a single layer perceptron for an AND gate. 1 1 A
The training set for AND gate is as follows: '11 i '11
g s |52 |8 | £ |i%
X1 ‘ Xz | b | Yin y T Aw;y ‘AWz‘Ab W1‘W2‘ b
-1 -1 0 0 0 -1 1 1 -1 1 1 -1
1 -1 0 0 0 -1 -1 1 -1 -1 1 -1
-1 1 0 0 0 -1 1 -1 -1 1 -1 -1
1 1 0 0 0 1 1 1 1 1 1 1
-1 -1 -1 -3 -1 -1 Training is successful since the
1 -1 -1 -3 -1 -1 output of the single layer
-1 1 -1 -3 -1 -1 perceptron is equal to the
1 1 1 3 1 1 target output.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

ADALINE NETWOKS

ADA line networks (adaptive linear
neuron networks) are similar to that of
single layer perceptron. All the
components are similar to that of a
single layer perceptron. So we can
conclude the ADA line networks are

LECTURE NOTES ON SOFT COMPUTING P age |7
Algorithm for MADA line

MMATION UNIT
Weights su v

Thresholding output

Xp Summation of
Inputs weighted inputs

THRESHOLDING UNIT

same as single layer perceptron, except the in the training algorithm we have the

update equation are as

follows: w;(new) = w;(old) + a(y;, — Ty)x; and

b;(new) = b;(old) + a(y;, — Ty)-i.e. Txis replaced with the error (y;, — Ty)-

Algorithm for training a single layer perceptron

Step 1. Initialize the weights and bias to zero. Also set the learning rate « in
between 0-1.
Step 2. While stopping condition fails do steps-3 to step-7.
Step 3. For each training pair do step-4 to step-6.
Step 4. Set the activation of i/p.
Step 5. Compute the net i/p to the activation function y;, = b + (X, wix;).
Activation function is used to compute the o/p vy = f(yin) =
+1,yin >0
{_1' Yin = 0°
Step 6. If o/p and target are not equal then change the weights and bias as
follows: w;(new) = w;(old) + a(y;, — Ty)x; and
b;(new) = b;(old) + a(yin — Ti)-
else
w;(new) = w;(old) and b;(new) = b;(old).
Step 7. Test for stopping condition.
MADALINE NETWORKS
The MADA line networks can jnputs A
handle linearly separable _-* N ﬂ"""’
problem. This is a network A AT
which is composed of —| A : :
several constituent ADA line : A A le—s
network or single layer —| A

perceptron. This network is
called as MADA line due to

EI : ADALINE network

reason that is has a number of hidden layers.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

Step 1.

Initialize the i/p and hidden neuron layer weights and bias to small
random values and hidden layer and o/p layer weights and bias to
0.5.

Step 2. While stopping condition fails do steps-3 to step-9.

Step 3. For each training pair do step-4 to step-8.

Step 4. Set the activation of i/p units.

Step 5. Compute the neti/p to the hidden units z;,;) = b; + (XiL; wixy).

Step 6. Activation function is used to compute hidden unit output,
Zi = f(Zin(i))'

Step 7. Calculate the net i/p for o/p neuron Yy, = b; + (Xi; zx;) and
apply activation function for each y;, y; = f (yin(i)).

Step 8. If o/p and target are not equal then change the weights and bias as
follows: w;(new) = w;(old) + a(y;, — Ti)x; and
b;(new) = b;(old) + a(y;, — T). else

w;(new) = w;(old) and b;(new) = b;(old).
Step 9. Test for stopping condition.
Example: perform the training process with MADA line with 2 to 1 for X-OR.
TRAINING X-OR BY MADALINE ALGORITHM

x1 | x2 wl w2 | bl yin y T | Awl | Aw2 | Abl wiln w2n | bln
-1|-1| 043 |043]|05]| 036 | -1 | -1]| 0 0 0 0.43 | 043 | 05
11| 043 (043 |05 236 | 1 | -1|-06| 0 |-06| -017 |043|-01
1| 1| 043 |043|05]| 05 1|1 0 0 0 0.43 | 043 | 05
1 |-1| 043 [043 |05 05 1|1 0 0 0 0.43 | 043 | 05
x1 | x2 wl w2 bl yin y T Awl | Aw2 | Abl wln w2n | bin
1|-1| 043 |043|05| 036 | -1 | -1 | O 0 0 0.43 | 043 | 05
11| -017 |043|05| 076 | 1 | -1 |-06| 0 |-06| -077 |043|-01
1| 1| 043 |043|05]| 05 1|1 0 0 0 0.43 | 043 | 05
1 |-1] 043 (043 |05 05 1|1 0 0 0 0.43 | 043 | 05
x1 | x2 wil w2 bl yin y T Awl | Aw2 | Abl wiln w2n | bin
-1|-1| 043 |043]|05]| 036 | -1 | -1]| 0 0 0 0.43 | 043 | 05
11| 077 |043|05| 016 | 1 |-1|-06]| 0 |-06]| -137 |043|-01
1| 1| 043 |043|05]| 05 1|1 0 0 0 0.43 | 043 | 05
1 |-1| 043 [043 |05 05 1|1 0 0 0 0.43 | 043 | 05

LECTURE NOTES ON SOFT COMPUTING P age |8

Awl | Aw2 | Abl wln w2n | bln
0.43 043 | 0.5
-1.37 | 043 | 05
0.43 043 | 05
0.43 043 | 0.5

x1 | x2 wl w2 bl yin
0.43 043 | 0.5 | -0.36
-1.37 | 043 | 0.5 | -0.44
0.43 043 | 0.5 0.5
0.43 043 | 0.5 0.5

N N
e N SN N
oO|O0|O | O
oO|O0|O | O
o|lOo|O|O

PlA RS
=Nl Rl

BACK PROPAGATION NEURAL NETWORKS

A multilayer feed forward back propagation neural network with one layer of z
hidden units is shown in the figure. The layer having the bias from wys;, woy,...,Wom
and hidden neuron having the bias vgs, Vvog,...,vom. The figure only feed forward
network is shown but during the back propagation phase of learning the signals
are sent in the reverse direction, i.e. from o/p to i/p layer.

The training algorithm of back propagation involves four steps:

Initialization of weights and bias- The bias and the weights are chosen as
small numbers.

Feedforward-Each i/p pair receives the i/p and transmits to the hidden
layer. Each hidden unit then calculates the o/p and transmits this signal to the o/p
units.

Back propagation of error-Each o/p is compared with target o/p and the
determines the error. Based on the error the factor 6 is computed and is used to
distribute the error at o/p unit yx back to all units in the previous layer. Similarly
the factor §; is computed for each hidden unit.

Update the weights and the bias- The weights and the bias are updated
using the é-factor and activation. =(ti-yi)f ’ (tk-yi)(Generalized § rule of learning).

Algorithm for Back propagation

Step 1. Initialize weights and bias to small random values.

Step 2. While stopping condition fails do steps-3 to step-10.

Step 3. For each training pair do step-4 to step-9.

Step 4. Each i/p unit receives the signal x; and transmits this signal to all
other units.

Step 5. Compute the net i/p to the hidden units z;,;, = v,; + (zr, vij.xl-).

Activation function is used to compute the o/p of hidden units,

2 = f(Zingj)-

Step 6. Calculate the net i/p for o/p neuron yn) = woy + (Z}l:l Wik. z]-) and
apply activation function for each yy, y, = f (yin(k)).

Step 7. For each yx calculate the &i=(ti-yi)f 'Winw) = (&yi)Sf Wina)-(1- f
ing))-

Step 8. Each hidden unit sums its 6 i/p from the previous layer and o/p is

givenas: &y = Xk-1 6. Wik - The error information is calculated
as A]= Sm(])f’(Zm(]))

Step 9. Each of the o/p unit update its bias and weights as given below.
wjx(new) = wj(old) + Awj, where Awj, = adyz; and bias
Wy (new) = wy, (old) + Aw,; where Aw,;, = ad,. Each hidden

unit update its weights and bias as follows v;;(new) = v;;(old) +
Av;; where Av;; = al;x; and bias v,;(new) = v,;(old) + Av,; where
Av,; = al;.

Step 10. Test for stopping condition.

Merits of Back propagation Algorithm

1. The mathematical formulation is so compatible for any kind of networks.
Multilayer neural network trained with back propagation algorithm has got a
greater representation capability. Any non linear activation function.

3. It requires good set of training data. It can tolerate noise and missing data in
training sample.

4. Easy to implement.

The computation time is reduced if the weights chosen are small at the

beginning stage.

6. Wider application.

Can be used to store a huge amount of pattern.

8. The batch update of weights exists, which provides a smoothing effect on
weight corrections.

“

N

Demerits of Back propagation Algorithm

1. Learning often takes longer time to converge.

2. Complex functions requires more iterations.

3. Gradient descent method used in back propagation algorithm gives guarantee
to minimize error at local minima.

4. The network may be trapped in a local minima, though a better solution is
available nearby.

5. The training may sometimes cause temporal instability to the system.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |9

Example: Find the new weights for a network with i/p pattern [0.6 0.8 0] Oin(3) = 2k—101-Wi3= 0.0977*2 = 0.1954;
2 10

is 0.9. The i/p hi igh = hi : /
and target o/p is 0.9. The i/p hidden weights are v Ll) ; il and hidden o/p Error term at hidden layer: A;= 5. f (Zin(j)) _ 5in(]_)_f(zm(j)) (1 _ f(Zin(j))>;
weights are w=[-1 1 2]T. vg3=-1 and wy;=-1. The learning rate = 0.3 and use binary
sigmoid activation function. 1= 8incy- f (Zinn)) (1 - f(zin(l))) =-0.09777%0.645%(1-0.645) = -0.01802;
Solution: Dy= Siney-f (Zin)) (1 - f(zm(z))) = 0.09777%0.659*(1-0.659) = 0.01769;

n 1

fUD) = =5 Zingj) = Vo + (Tlea Vi x0) and z; = £ (2in(j)) = T—=ammgyy

As= Singa)- f (zin) (1 - f(zm(3))) = 0.1954*0.5448*(1-0.5448) = 0.03906;

Zin(t) = Vo1 + (Uiq Viz-x;) = 0+ (0.6*2 + 0.8%1 + 0%0) = 2; Weight Updati
eight Updating

Zin@) = Vor T (Riea Viz- %) = 0+ (06¥1 + 0872+ 0%3) = 2.2; Change in weight (i/p-hidden layer)

Zin@zy = Vo + (Nleq Uiz X;) = -1 + (0.6%0 + 0.8%2 + 0%1) = 0.6;

Avij = aAixi
1
= [(Zinv)) = 1357 = 1ram033 = 1ypmos = 0-645; Avy; = ah,x;=0.3* -0.02238*0.6= -0.00324;
22 = [(i) = Tty = rromes = o = 0659 Avyy = abyx,=0.3* -0.01769%0.6= 0.00318;

1 Avys = ahsx,=0.3* 0.03906*0.6= 0.000703;

f(Zm(3)) azm(3) 1+e—03%06 11¢-0.18 =0.5448;

1 Ay, = abyx,=0.3%-0.02238*0.8= 0.00432;
Yintky = Wor + (X1 Wik-) and yi = f (Vineey) = PPpRL o
Avy, = ab,x,=0.3*0.01769*0.8= 0.00424;

1) = Wor + (I, wp.2;) = -1 + (0.645%1 + 0.659*1 + 0.5448*2) = 0.1;
Yin(t) = Wor + (Bila Win-2)) () Avys = ah;x,=0.3¥0.03906%0.8= 0.000937;

1

= (Vi) = aymm o001 = =00 = 0-50749 = 0.5075; Avsy = ah;x3=0.3%-0.02238*0= 0;

Or=(te-yi)f 'Wingo) = (i) of Wing)-(1- f Ving)) Avy, = alb,x5=0.3*0.01769*0= 0;

81=(0.9 - 0.5075) * 0.5075 * (1-0.5075)=0.0977. Avss = al3x;=0.3%0.03906*0= 0;

Error at hidden layers &,y = X1 6j. Wiy New weights are as follows v;;(new) = v;;(old) + Av;;

5in(1) =M 8;.wy,=0.0977%-1=-0.0977; 2 —0.00324 1+0.00318 0+0.000703 0 0 O
Upew = | 1+0.00432 2 +0.00424 2+0.000937|=(0 0 O
Sin2y = L1 81.wy,= 0.0977%1 = 0.0977; 0+0 3+0 1+0 0 00

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |10

Change in bias (hidden layer): Av,; = a4, BACK PROPAGATION THROUGH TIME (BPTT) ALGORITHM
all' - f

Avy; = aA=0.3*-0.02238=-0.0054; —=Xi1—= 4 =¥

i e
Avy, = ahA,=0.3%-0.01769= 0.0053;

Avys = aA;=0.3* 0.03906= 0.00117; & unfold Ihmugh mme &

New bias are v,;(new) = v,;(old) + Av,; ; a,. | Ay 2—= f I S P
= f e | — f; —=Xj o= 3 ' -

v, = [0 — 0.0054 0+ 0.0053 — 1+ 0.00117] = [—0.0054 0.0053 — 0.99883]. Xi—| 1 t+1 -

Change in the weights for hidden-o/p layer: Awj, = adyz; To train a recurrent neural network using BPTT, some training data is needed. This

Ay, = ab,z, = 0.3 + 0.0977 * 0.645 = 0.01526; data should be an ordered sequence of input-output pairs,

i
Aw,, = ab,z, = 0.3 + 0.0977 * 0.659 = 0.01558; (<ag,yo >, <anyr > <axyz >, .., < 8p-1; ¥t >) |
Also, an initial value must be specified for 0. Typically, the vector with zero-
Aws; = adyz3 = 0.3 % 0.0977 = 0.5448 = 0.01287; magnitude is used for this purpose.
New weights for the hidden-o/p layer: wj, (new) = wj, (old) + Awy, BPTT begins by unfolding a recurrent neural network through time as shown in

this figure. This recurrent neural network contains two feed-forward neural
networks, fand g. When the network is unfolded through time, the unfolded
network contains k instances of f and one instance of g. In the example shown, the
network has been unfolded to a depth of k=3.

w = [-1+0.01526 1+0.01558 2+0.01287] =[-0.98474 1.01558 2.01287].
Change in bias for o/p layer: Aw,;, = ad;

Aw,yy = ady = 0.3 %0.0977 = 0.023;
Training then proceeds in a manner similar to training a feed-forward neural

New bias for output layer w,, (new) = w,; (old) + Aw,. network with backpropagation, except that each epoch must run through the
observations, ¥ , in sequential order. Each training pattern consists
of {Xf: ey At 1y Ay vony Aepie—1y XH'*“}. (All of the actions for k time-
steps are needed because the unfolded network contains inputs at each unfolded

level.) Typically, backpropagation is applied in an online manner to update the
weights as each training pattern is presented.

Wy, (new) = w,,(old) + Aw,; = —1+ 0.023 = —0.976.

After each pattern is presented, and the weights have been updated, the weights in
each instance of f (fi,f2,...fx) are averaged together so that they all have the same

weights. Also, Xi+1 is calculated as *t41 = f{xf! H'f}, which provides the

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |11

information necessary so that the algorithm can move on to the next time-
step, t+1.

Pseudo-code

Pseudo-code for BPTT:

Back Propagation_Through_Time(a, y) // a[t] is the input
at time t. y[t] is the output
Unfold the network to contain k instances of T
do until stopping criteria is met:
X = the zero-magnitude vector;// x is the current

context
for t from O ton - 1 // t is time. n is
the length of the training sequence
Set the network inputs to x, a[t], a[t+1], ...,
a[t+k-1]

p = forward-propagate the inputs over the whole
unfolded network

e = y[t+k] - p; // error = target -
prediction

Back-propagate the error, e, back across the
whole unfolded network

Update all the weights in the network

Average the weights in each instance of f
together, so that each T is identical

X = F(X); // compute the
context for the next time-step

Advantages

BPTT tends to be significantly faster for training recurrent neural networks than
general-purpose optimization techniques such as evolutionary optimization.

Disadvantages

BPTT has difficulty with local optima. With recurrent neural networks, local
optima is a much more significant problem than it is with feed-forward neural

networks. The recurrent feedback in such networks tends to create chaotic
responses in the error surface which cause local optima to occur frequently, and in
very poor locations on the error surface.

RADIAL BASIS FUNCTION NETWORK (RBFN)

Let us look at some regression models:

1. Polynomial regression with one variable

yOo,w) =wy +wix + wox 4+ - =Y wix
2. Simple linear regression with D variable

y(x,w) = wy + wix; + -+ wpxp = wTX,

in one-dimensional case y(x,w) = w, + w;x , which is a straight line.
3. Linear regression with Basis function @;(x)

y(x,w) = wo + X7 w8 (x) = w(x)

there are now M parameters instead of D parameters

For this basis function we use Radial Basis functions. A radial basis function depends
only on the radial distance (typically Euclidean) from the origin, i.e. @(x) = @(]|x[|)-
If the basis function is centered at then @;(x) = h(||x — u;||). We would look at
radial basis functions centered at the data pointsx,,, n=1,..,N.

_ ezl

2
f”) or a logistic function

Typically h(x) is a Gaussian (Dj(x):exp(”
J

Q)j(x) =

1

2
loe=pe 1l
1+exp —]
9j

by two types of weights i.e. hypothetical (fixed
weights of input-hidden layer) and adjustable
weights (weights that can be adjusted, hidden-
output layer weights i.e. wy).

. The RBFN is characterised

Algorithm for Radial Basis Function N/W

Step 1. Initialize weights to small random
values.

Step 2. While stopping conditions fails do step-
3 to step-9.

Step 3. Activate the inputs neurons by applying
a set of inputs.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |12

Step 4. For each input do step-5 to step-8.
Step 5. Calculate RBF.
Step 6. Choose centre for each radial basis function.

2
Step 7. Calculate output for each hidden neuron as h;(x) = exp <— o [%D

where x;is the applied input, y; it the centre of Gaussian function and g; is
the smoothing parameter or width of the Gaussian function.

Step 8. Calculate the output of the network as y, (x) = X7, wy;h;(x) + wyowhere
wy; weights of the adjustable connections, h;(x)is the response of the RB
neurons, and wy,is the bias for output neurons.

Step 9. Test for the stopping condition. E = %Zn Y vi(x™) — th?, where E is the
error and where n is the number of input patterns, k is the sum of the
values for each output node k. y, (x™) is the achieved output for node k
given input (x™) and t} is the desired output for k node given input n.

Comparison of RBFs and BP-MLP

RBF N/W

BP_MLP

Always consists of three layers, i.e.
input, output and hidden layer.

Consists of one input and output layer
and a number of hidden layer.

The input-hidden layer weights are
hypothetical (cannot be changed).

All the connections are adjustable.

The response of the hidden layers
follows the Gaussian function.

The response of the hidden layers is a
linear connection of all the inputs of
that neuron

Constructs local approximation to non-
linear input-output mapping.

Constructs global approximation to
non-linear input-output mapping.

Has non-linear activation function

It has linear activation function.

KOHONEN SELF ORGANIZING FEATURE MAP (SOM)

The key principle for map formation is that training should be taken place over an
extended region of the network, which uses the concept of neighbourhood
neurons. The competitive networks is similar to a single layer network, except
there exist an interconnection between the output neurons because of which all
the output neurons compete with each other and the winner will be selected.

There are two methods to select a winner.

1. Squared Euclidean method: Here we will find the square of the distance

D) = TPy (o - w)?
The winner is that neuron which is having small distance.

2. Dot Product method: Using this method will find the dot product of input
vector and weight vector which is given by P(j) = Xty x; * wyj
That neuron is treated as winner that is having the large amount of dot
products.

between input vector x; and weight vector wj i.e.

Algorithm for Kohonen Self Organizing Feature Map

Initially the weights and learning rates (a) are set to a small values. The inputs
vector to be clustered presented to the network. Once the input vector is given and
based on the initial weights all the output neurons will compete with each other
and the winner will be selected. Based on the winner selection, weights are up to
date for a particular unit.

Step 1. Initialize weights and learning rate.

Step 2. While stopping condition fails do step-3 to step-9.

Step 3. For each input vector do step-4 to step-6.

Step 4. For each j compute the squared Euclidean distance D(j) = Y%, (x; - w;)? for
l<isnandl<j<k.

Step 5. Find the index j for minimum D;.

Step 6. For all units j for a specified neighbourhood of j and for all i update the
weights. w(n) = weyq + a(x; — wy)).

Step 7. Update the learning rule.

Step 8. Reduce the radius of topological neighbourhood.

Step 9. Test for stopping condition.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |13

W__=[0.2 0.6 04 09 02
“~103 05 07 06 08

D(j) = Xity (x; - wy)?

D(1)=(x1-W11)?+(x2-W21)?=(0.3-0.2)?+(0.4-0.3)?=0.01+0.01=0.02,

Example:],xl- =1[0.3 0.4], «a=0.3.

Solution:

D(2)=(x1-W12)?+(x2-W22)?=(0.3-0.6)?+(0.4-0.5)2=0.09+0.01=0.1,
D(3)=(x1-w13)?+(x2-w23)?=(0.3-0.4)?+(0.4-0.7)?=0.01+0.09=0.1,
D(4)=(x1-W14)?+(X2-W24)?=(0.3-0.9)?+(0.4-0.6)?=0.36+0.04=0.4,
D(5)=(x1-w15)?+(x2-w25)?=(0.3-0.2)?+(0.4-0.8)?=0.01+0.16=0.17,
w(n) = wyq + a(x; — w;j)
Wi1n=Wi10+a(X1-W11)=0.2+0.3(0.3-0.2)=0.2+0.03=0.23;
W21n=W210+a(X2-W21)=0.3+0.3(0.4-0.3)=0.3+0.03=0.33;

wy=[023 06 04 09 02
¥~ 1033 05 07 06 08l

LEARNING VECTOR QUANTIZATION (LVQ)

The architecture of LVQ is similar to SOM architecture. In LVQ networks each
output unit has a known class. Hence it uses supervised learning method. The
method for initializing the reference vector.

1. Take first m training data and use them as weight vectors and remaining
vectors used for training.

2. Initialize the reference vector randomly and assign initial weights and classes
randomly.

Training Algorithm of LVQ

The algorithm for the LVQ network is to find the output unit that has a matched
pattern with the input vector.

At the end of the process if x (input vector) and w (weight vector) belongs to the
same class, then weights are moved towards the new input vector.

In this method winner neuron is identified. The winner neuron index is compared
with the target and based on the comparison results weights are updated.

Step 1. Initialize the weights and learning rates.
Step 2. If stopping condition fails do step-3 to step-7.
Step 3. For each training input perform step-4 to step-5.

Step 4. Compute j using square Euclidean distance method. D(j) = Z’f:l(wij - xl-)2 ,

find j when D(j) is minimum.

Step 5. Update wyas follows: if T=C;thenw;;(new) = w;;(old) + a(x; — wi; (old))

else w;;(new) = w;;(old) — a(xl- — wy; (old))

Step 6. Reduce the learning rate a.
Step 7. Test for the stopping condition.

1.0 10 1
0 0 1 1 . o 2 :
Example: 110 0 is the vector and class is given by 1 and a=0.1 to
1 0 0 1 2
0.05.

Solution: Let us consider 15t two vectors as reference wi=[1 01 0] and
w>=[0 0 1 1] and other two vectors used as training data. a=0.1,
x1=[110 0] and T=1.

Calculate D(j) = Y7 (wy; - x;)°

D(1) = (1-1)2+ (0-1)2+ (1-0)2+ (0-0)2= 2.

D(2) = (0-1)2+ (0-1)2+ (1-0)2+ (1-0)2= 4.

Therefore D(1) is minimum i.e.j=1 and ;= 1.

Now w;;(new) = w;;(old) — a(x; — w;;(old))

wi(new) =[1010]+0.1*([1100]-[1010])
=[1010]+0.1%([0 1 -10])

=[1010]+[00.1-0.10]=[10.10.90]

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |14

wi =[10.10.9 0] w2=[0011] x,=[1001] «=0.1and T=2.

D(1)=(1-0)2+(0.1-0)2+(09-1)2+(0-1)2=1.82

D(2)=(0-1)2+(0-0)2+(1-0)2+(1-1)2=2

D(1) is minimum and j=1 and Cj = 1 and T!=(;

wi(new) =[10.1090]+0.1*([1001]-[10.10.90])
=[10.10.90] +0.1*([0-0.9-0.11])
=[10.1090]+[0-0.09-0.010.1]=[10.110.81-0.1]

on = 0.5x0.1 =0.05.

SIMULATED ANNEALING NEURAL NETWORKS

Simulated annealing was developed in the mid 1970's by Scott Kirkpatric, along
with a few other researchers. Simulated annealing was original developed to better
optimized the design of integrated circuit (IC) chips. Annealing is the metallurgical
process of heating up a solid and then cooling slowly until it crystallizes. If this
cooling process is carried out too quickly many irregularities and defects will be
seen in the crystal structure. Ideally the temperature should be deceased at a
slower rate. A slower fall to the lower energy rates will allow a more consistent
crystal structure to form. This more stable crystal form will allow the metal to be
much more durable.

Simulated annealing seeks to emulate this process. Simulated annealing begins at a
very high temperature where the input values are allowed to assume a great range
of random values. As the training progresses the temperature is allowed to fall.
This restricts the degree to which the inputs are allowed to vary. This often leads
the simulated annealing algorithm to a better solution, just as a metal achieves a
better crystal structure through the actual annealing process.

Simulated annealing can be used to find the minimum of an arbitrary equation that
has a specified number of inputs. In the case of a neural network, as we will learn
in Chapter 10, this equation is the error function of the neural network. he weight
matrix of a neural network makes for an excellent set of inputs for the simulated
annealing algorithm to minimize for. Different sets of weights are used for the

neural network, until one is found
that produces a sufficiently low
return from the error function.

(=)

k4

. R ize
First, for each temperature the ecoording fo the

simulated annealing algorithm o
runs through a number of cycles.

This number of cycles is
predetermined by the

programmer. As the cycle runs the
inputs are randomized. Only
randomizations which produce a

s olufion.

Replace cumrsnt
solution with
rendomized

better suited set of inputs will be
kept. Once the specified number
of training cycles has been
completed, the temperature can
be lowered. Once the temperature
is lowered, it is determined of the
temperature has reached the
lowest allowed temperature. If the as
temperature is not lower than the l
lowest allowed temperature, then
the temperature is lowered and
another cycle of randomizations
will take place. If the temperature l

Resched max riss
or this Empersturs?

Decrams
tEmpsrsturs oy
5 pecified rate

is lower than the minimum
temperature allowed, the
simulated annealing algorithm is Lowsr tEmpersturs s

bound resched?
complete.

A neural network's weight matrix can be thought of as a linear array of floating
point numbers. Each weight is independent of the others. It does not matter if two
weights contain the same value. The only major constraint is that there are ranges
that all weights must fall within. Because of this the process generally used to
randomize the weight matrix of a neural network is relatively simple. Using the
temperature, a random ratio is applied to all of the weights in the matrix. This ratio
is calculated using the temperature and a random number. The higher the

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |15

temperature, the more likely the ratio will cause a larger change in the weight
matrix. A lower temperature will most likely produce a smaller ratio.

HOPFIELD NETWORKS
Hopfield networks are
: W
constructed from L :
artificial neurons. These . w
artificial neurons have N h2 ~ o
inputs. With each input i : w

there is a weight w;
associated. They also

have an output. The Figure 1: An artificial neuron as used in a Hopfield networle.

state of the output is maintained, until the neuron is updated. Updating the neuron
entails the following operations:

e The value of each input, xi is determined and the weighted sum of all inputs,
Y. w; x; is calculated.

e The output state of the neuron is set to +1 if the weighted input sum is larger
or equal to 0. It is set to -1 if the weighted input sum is smaller than 0.

e A neuron retains its output state until it is updated again. Written as a

1: Ywix;=0

formula:o = {_1 : Ywix; < 0

A Hopfield network is a network of N such artificial neurons, which are fully
connected. The connection weight from neuron j to neuron i is given by a number
wj; . The collection of all such numbers is represented by the weight matrix W,
whose components are wj; .

Now given the weight matrix and the updating rule for neurons the dynamics of
the network is defined if we tell in which order we update the neurons. Thereare
two ways of updating them:

e Asynchronous: one picks one neuron, calculates the weighted input sum and
updates immediately. This can be done in a fixed order, or neurons can be
picked at random, which is called asynchronous random updating.

e Synchronous: the weighted input sums of all neurons are calculated without
updating the neurons. Then all neurons are set to their new value, according to

the value of their weighted input sum. The lecture slides contain an explicit
example of synchronous updating.

Figure 2: A Hopfield network as an autoassociator. One enters a pattern in
blue nodes and let the network evolve. After a while one reads out the yellow
nodes. The memory of the Hopfield network associates the vellow node pattern
with the blue node pattern.

USE OF THE HOPFIELD NETWORK

The way in which the Hopfield network is used is as follows. A pattern is entered in
the network by setting all nodes to a specific value, or by setting only part of the
nodes. The network is then subject to a number of iterations using asynchronous
or synchronous updating. This is stopped after a while. The network neurons are
then read out to see which pattern is in the network.

The idea behind the Hopfield network is that patterns are stored in the weight
matrix. The input must contain part of these patterns. The dynamics of the
network then retrieve the patterns stored in the weight matrix. This is called
Content Addressable Memory (CAM). The network can also be used for auto-
association. The patterns that are stored in the network are divided in two parts:
cue and association (see Fig. 2). By entering the cue into the network, the entire

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

LECTURE NOTES ON SOFT COMPUTING P age |16

pattern, which is stored in the weight matrix, is retrieved. In this way the network
restores the association that belongs to a given cue.

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
FUZZY INFERENCE SYSTEM

DATABASE RULEBASE

CRISP_> FUZZIFICATION DECISION MAKING) DEFUZZIFICATION _>CRISP
INPUT SYSTEM OUTPUT

FUZZY INPUT FUZZY QUTPUT

The fuzzy inference system that we have considered is a model that maps

— input characteristics to input membership functions,

— input membership function to rules,

—rules to a set of output characteristics,

— output characteristics to output membership functions, and
— the output membership function to a single-valued output, or
— a decision associated with the output.

We have only considered membership functions that have been fixed, and
somewhat arbitrarily chosen. Also, we have only applied fuzzy inference to
modelling systems whose rule structure is essentially predetermined by the user’s
interpretation of the characteristics of the variables in the model. In general the
shape of the membership functions depends on parameters that can be adjusted to
change the shape of the membership function. The parameters can be
automatically adjusted depending on the data that we try to model.

Model Learning and Inference Through ANFIS

Suppose we already have a collection of input/output data and would like to build
a fuzzy inference model/system that approximate the data. Such a model would
consist of a number of membership functions and rules with adjustable parameters
similarly to that of neural networks. Rather than choosing the parameters
associated with a given membership function arbitrarily, these parameters could
be chosen so as to tailor the membership functions to the input/output data in
order to account for these types of variations in the data values. The neuro-

adaptive learning techniques provide a method for the fuzzy modeling procedure
to learn information about a data set, in order to compute the membership
function parameters that best allow the associated fuzzy inference system to track
the given input/output data. Using a given input/output data set, the toolbox
function anfis constructs a fuzzy inference system (FIS) whose membership
function parameters are tuned (adjusted) using either a backpropagation
algorithm alone, or in combination with a least squares type of method. This allows
your fuzzy systems to learn from the data they are modeling.

0 i S tterreceed

Fie Bt View

Checking Data (£44)
+ cooe + osoo

[e e o JP el e
I

| |

1 ‘ouu-«mmmrlm

e e e

o |) ——

CeTr— ” ey o

Figures: left to right and top to bottom, Sugeno FIS, Input, Output, Loading
Datasets, Training, Testing, Rule base, FIS, ANFIS network.

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

