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CHAPTER 01
INTRODUCTION TO SOFT COMPUTING

ORIGIN OF SOFT COMPUTING

Artificial intelligence is a branch of computer science dealing with building of
system that exhibits automation in intelligent behaviour. But intelligence is not very
well defined due to which the tasks associated with intelligence i.e. learning,
intuition, creativity and decision making also seems to partially understood.

This quest of building intelligent systems gave rise to new techniques that aided a
lot in building intelligent problem solvers. Some of them are expert system, neural
networks, fuzzy logic, cellular automata and probabilistic reasoning. Out of this
fuzzy logic, neural networks and probabilistic reasoning are called as soft computing.
The term soft computing was coined by Lotfi A. Zadeh.

Soft computing differs from hard computing (conventional computing) in its
tolerance to imprecise, uncertain and partial truth. Hard computing basically deals
with mathematical approaches that demands a great degree of precision and
accuracy. But in engineering problems, it is very difficult to determine the input
with great degree of precision. Hence a best estimate is made to find the solution
which restricts the use of mathematical approaches, especially in inverse
problems.

The application of soft computing to the inverse problems is to exploit the
tolerance for imprecision, uncertainty and partial truth to achieve tractability,
robustness and low cost solutions.

CONSTITUENTS OF SOFT COMPUTING
The basic components of soft computing are as follows:
e Fuzzy Systems (models uncertainty in the system)
e Neural Networks (models biological neuron of human brain)
e Genetic Algorithm (selection of a good solution from a solution set)

FUZZY LOGIC

It is a mathematical tool to model uncertainty in the system. This is applicable
where imperfection in data is present. Basically used to represent uncertainty that
arises due to generality, vagueness, ambiguity, chance or incomplete knowledge.

In fuzzy sets the members of the sets are associated with a value representing its
grade of membership in the fuzzy set. This is in contrast to that of classical set

called as crisp set i.e. the members are either belongs to the set or not. But each
member in the fuzzy set is associated with a membership value between [0, 1].

Let A={ram, kiran, john} and their corresponding height are 6, 5.5 and 5.1 feets
respectively. Now Height >6ft(90%), Height<5ft(10%), and Height=5ft(50%). So
set A can be represented as {0.9/ram,0.5/kiran, 0.1/john} where the fractional
values represents the membership values.

ARTIFICIAL NEURAL NETWORKS

ANN is based on learning and testing theory. A set of data is needed to learn things.
f(x)=x2 in the range (0,7)
X : 0 1 2 3 4 5 6 7
f(x) : 0 1 4 9 16 25 36 49

There are massively highly interconnected N/W of processing elements called
neurons. There are unorthodox search and optimization algorithms insipid by the
biological process.

EVOLUTIONARY TECHNIQUES

This is also called as genetic process. It is used to mimic natural evolution. GA
makes a random search through a given set of alternate solution to find the best
alternate solution w.r.t the given criteria of goodness. e.g. ant colony optimization,
swarm intelligence etc.

Some of the techniques that are combination of these basic components of soft
compounding are called as hybrid

techniques. Some of these are as n
follows: neuro-fuzzy, neuro-GA, fuzzy- —>! Initial population
GA. i
t Yes
ADVANTAGES OF SOFT e
COMPUTING ; Best STOP
¢ Model based on human reasoning a Fit
e Models can be simple and t No
accurate i _
e Fast computing —— Crossover & mutation
e Good in practice °
n
APPLICATION AREAS
. Process control . Pattern recognition
. Robotics . Time series forecasting

. Optimization techniques Medicine and diagnosis
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CHAPTER 02
FUZZY LOGIC

INTRODUCTION

Fuzzy logic is a tool which provides an inference morphology that enables
appropriate human reasoning capabilities to be applied to knowledge based
systems. The theory of fuzzy logic provided mathematical strength to capture the
uncertainties associated with human cognitive processed such as thinking and
reasoning.

ADVANTAGES OF FUZZY LOGIC

e There are an efficient tool for embedding human knowledge into useful
algorithms.

e This can approximate any multi valued non linear function.

e These are applicable when mathematical models are unknown or impossible
to obtain.

e Operates successfully under a lack of precise information.

e Are also appropriate tools in generic decision making processes.

DISADVANTAGES
e Human solution to the problem must exist and this knowledge must be
structured.

e Number of rules increases exponentially with increases in number of inputs
and number of fuzzy subsets per input variable.

PROBABILITY VS FUZZY

Fuzzy logic and probability theories are the most powerful tools to overcome the
imperfections. Fuzzy logic mainly responsible for representing and processing of
vague data. Probability theory is mainly responsible for representing and
processing of uncertainty.

Probability measure
e (alculates the probability that an
unknown variable X’ ranging on ‘u’
hits the well know set ‘A’
o Before the event happens
e Measure theory

e Domain is 2D(Y/N).

Membership measure
e Calculates the membership of a

well known variable X’ ranging on
‘u’ hits the unknown set ‘A’.

e After the event happens

e It will use the set theory

e Domainis 0-1.

Imperfection
Probability Theory Fuzzy logic
e Randomness e Vagueness (ill defined)
e Probability rules e Fuzzyrules
e Before the event happens e  After the event happens

EXAMPLES OF PROBABILITY THEORY
e Itis probable that it will rain a lot tomorrow.
e Itis probable that the image will be very dark.
e Itis probable that her new friend is handsome.

Name Height Membership value
Sohan 5.2" 0.2
John 6'.1" 1
Mohan 47" 0
Abraham 5.8” 0.8
CRISP SET VS FUZZY SETS
Example 1:
Tall={Sohan, John, Mohan, Abraham} ---------=-==-=nmsmmmmmmmmmmmmnen > Crisp set.

1, for x € Tall

UTau = {O, for x & Tall i.e. the value is either 0 or 1.

Tall={(sohan, 0.2), (john, 1), (Mohan, 0), (Abraham, 0.8)} --------- > Fuzzy set.

treu = L0 — 1lfor all x € Tall i.e. a number of membership functions

ranging from O to 1.

Example 2:
A={x|x<=30} where A-> youngness of people.

;5

8

i
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A set is a well defined collection of objects. Well defined means the objects either
belongs to or does not belongs to the set. This is known as crispness and the sets
are known as crisp sets.

A fuzzy set A in a universe of discourse U is characterised by membership function

Ma which takes values in the interval O to 1 i.e. pla:U->[0,1].

If U contains finite numbers of elements, let it contain n elements, fuzzy set A can
be denoted by:  A={ ta(u1)/u1, Ha(uz)/uz, Ha(uz)/us, ..., Ha(un)/Un}.

Example 3:

X={1,2,3,4,5} and its Comfortness={(1,0.1), (2,0.4), (3,0.8), (4,1), (5,0.7)}.
The elements of the

above fuzzy set are

crisp sets.

m>T Fuzzy SeikRepreseniation

A
Example 4:
Temperature: Sensing: Coid o xmr o awar _—

L.(]I‘]l n l'[l;lill wa‘rm noL

TO-T2 Cold X FaY VAN AY Vi
T1-T3 Cool NA NS N N/
T2-T4 Normal A A AN A
T3-T5 Warm NS NSO ONS N
T4-T6 Hot - - - - -

o
i+

"
-
ol
n

As we discussed earlier Tall={(sohan, 0.2), (john, 1), (mohan,0), (Abraham, 0.8)}.
and similarly the opposite of this can be found by subtracting the membership
values form 1. Short={(sohan, 0.8), (john, 0), (mohan,1), (Abraham, 0.2)}. (4’=1-4)

CHARACTERISTIC CRISP SET
Set: Set is a collection of well defined objects. A={1, 2, 3, ..}.

Universe of discourse: 1t is set that contain all possible objects from which other
set can be formed. Universal set of all numbers is a Euclidean Space.

Venn diagram: 1t is a pictorial representation of set. The venn U
diagram for the set A and its universal set U is represented as
follows.

Membership: If an element is x is a member of set A then it is
represented by the symbol € read as “belongs to”. And when x is not a member of A
then it is represented by the symbol & read as “not belongs to”. (x€ A).

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

Cardinality: The number of elements in a set is called as cardinality of the set. It is
represented as |A| or #A. e.g. A={1,2,3,4} then |A|=4.

Family of sets: A sets whose members are sets themselves are called as family of
sets. e.g. A={{1,2,3},{2,3,4,5},{1,3,5}}.

Null/empty sets: A set containing no elements is called a null set or empty set. It is
represented as @ or {}. And |@|=0 as it contain no elements.

Singleton set: A set with a single element is called as singleton set. It has
cardinality one. e.g. A={a} is a singleton set.

Subset: Given two set A and B over the universal set U. If all the elements of B is
contained in the set A, then B is said to be a subset of A. It is represented as B C A.

Superset: Given two sets A and B over the universal set U. If all the elements of B is
contained in the set A, then A is said to be a superset of B. It is represented as
ADB.

Power set: A power set is a collection of all subsets of a given sets including null
set. For a set A={1,2}, the power set is24={{1}, {2}, {1, 2}, {}}-

OPERATIONS ON CRISP SETS v

Union: Union operation on two sets A and B is another set
represented by AUB that contains all the elements that are
present in A and B. e.g. A={a,b,c} and B={b,c,d,(f}, then

AUB={a,b,c,d,f}.

Intersection: Intersection operation on two sets A and B is
another set represented by AnB that contains elements that
are present in A as well as B. e.g. A={a,b,c} and B={b,c,d,f},

then AnB={b,c}.

Complement: Complentation operation on a set A of a
universal set U is a set represented by AC that contain

elements that are there in U but not in A.

Difference: Difference operation on two set A and B is
another set represented by A-B that contain elements that
are only in A but not in B.

Partition: Division of set into many subsets such that the union
of all the subsets gives back the same set.
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Covering: Division of set into many
subset such that they have common element.

Rule of Addition: Given a partition on A where A, i=1,2,..,n are its non-empty
subsets then, |A| = | UL 4] = X7 |4

Rules of Inclusion and Exclusion: Rules of addition cannot be applied to covering
of a set A. In this case we use principle of inclusion and exclusion which is as
follows, |4l = |U%, 4, = T 14, =T 37 4, 0 4l + 2 37 B0 A n 40
Ak...—1In+1i=1nAl.

Problems 1:

Assume that [E[=600, [A|=300, |B|=225, [C|=160. Where A is the set of male students,
B is the set of bowlers and C is the set of batsmen. Also given AnB be 100, 25 of whom
are batsmen too i.e. AnBnC. And the total number of male batesmen ie. AnC is 85.
Determine the number of students who are i. Females, ii. Not Bowlers, iii. Not
Batsmen and iv. female students who can bowl.

Solution: i. No. of females = [E[-|A[=600-300=300.
ii. Not Bowlers= |E[-|B[=600-225=375.
iii. Not Batsmen=[E[-[C[=600-160=440.
iv. Female who can bowl=[A’|n[B[=225-100=125.

Problem 2:

Given [E[=100, where E indicates a set of students who have chosen subjects form
different streams in the computer science discipline, it is found that 32 study subjects
chosen from CN stream, 20 from MMT stream, 45 from the SS stream. Also 15 study
subjects CN and SS streams, 10 study subjects CN and MMT and 7 from both MMT
and SS streams, and 30 do not study any subjects chosen from either of the three
streams.

Solution:
[A’n B’n C’[=30. Given.
Then [A U B U C[’=30 by De Morgan'’s Law.
So we have [AUBUC|=|E[-[AUBUC|’
=100-30=70.
From the Principle of inclusion and exclusion
JAUBUC|=|A[|+|B|+|C|-]|AnB|-|BnC|-|CnA|+|AnBnC|
=>[AnBnC/|=-|A[-|B|-|C[+|AnB[+|BnC|+|CnA[+|AUBUC/|
-32-20-45+15+7+10+70= -97+102=5.

PROPERTIES OF FUZZY SETS

Commutative AUB=BUAandANB=BnNA

Associative AuBuUC)=UuB)uCandAn(BnC)=(AnB)nC

Distributed AuBnC)=UuBNn(4uC)
AnBuc)=WUnBullnC)

Idempotent AUA=AandANA=A

Identity AU =4, AUX=X;, An0=0;, AnNE=A

Low of Absorption AUu(AUB)=AandAn(AuB)=A

De Morgan’s Law AUB=ANnBandANB=AUB

OPERATIONS ON FUZZY SETS

The set operations on fuzzy sets are similar to that of crisp sets. Whenever set

operations are applied on one or more fuzzy sets it always results in a fuzzy sets.

LetA = {E 23 07 E},B = {E o1 06 0'—4}andC = {E,E,E,E}. Then the set
X1 X2 X3 X4

x1 x3 x3” x4 x1 " x3 x3” x4
operation are as follows:

Union: Let A and B be two fuzzy sets then the union operation results in a fuzzy set
whose membership function is defined as follows p,yp(x) = max {u,(x), us(x)}-
taus(x;) = max{0.2,0.6} = 0.6,
taos (x,) = max{0.3,0.1} = 0.3,
tauvg(x3) = max{0.7,0.6} = 0.7,

taus(xy) = max{0.5,0.4} = 0.5,
AuB = {08,902 07 05}
X1 X2 X3 X4
Intersection: Let A and B be two fuzzy sets then the intersection operation results
in a fuzzy set whose membership function is defined as follows pyng(x) =
min {,(x), pp(x)}-
Uynp(x1) = min{0.2,0.6} = 0.2,
tans(x,) = min{0.3,0.1} = 0.1,
tians(x3) = min{0.7,0.6} = 0.6,

tang(x4) = min{0.5,0.4} = 0.4,
Anp ={22,01 06 0t}
X1 Xz X3 X4
Complementation: Let A be a fuzzy sets then the complementation operation
results in a fuzzy set whose membership function is defined as follows
Hac(x) = {1 — pa(x)}.
pac(xy) = {1—-0.2} = 0.8,
pac(x,) = {1-0.3} = 0.7,
tac(x3) = {1 -0.7} = 0.3,

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.
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pac(x,) = {1 —0.5} = 0.5,
4c = {28 07 03 03]

X1 X2 X3 X4
Equality: Let A and B be two fuzzy sets then they are said to be equal if for every
corresponding member of the two sets u,(x) = pp(x).
#A(xl) = ,uc(xl) = 02,
,UA(xz) = ,uc(xz) = 03,
,UA(xg) = ,uc(x?,) = 07,
ua(xy) = uc(x,) = 0.5, Hence the fuzzy sets A and C are equal.
Product of a fuzzy set with a crisp number: Let A be a fuzzy set and a be a crisp
value then the product operation results in a fuzzy set whose membership function
is defined as follows i, 4(x) = @ * p,(x). Let @ = 2, the operation is as follows
tra(x;) =2%02=04
tra(x,) =2%03=0.6
toa(x3)=2%07=14=1
,U.Z.A(X4) =2%05=1

04 06 1 05

24 = {3325 )
Product of two fuzzy set: Let A and B be two fuzzy sets then the product operation
results in a fuzzy set whose membership function is defined as follows
tap (0 = 1, (). pp ().
tap(x;) =0.2%0.6=0.12,
tap(x,) =0.3%0.1=0.03,
tap(x3) = 0.7 0.6 = 0.35,

tap(x,) =0.5%0.4 =0.2.

012 0.03 0.35 0.2
A= {25252
Power of a fuzzy set: Let A be a fuzzy set and a be a crisp value then the power
operation results in a fuzzy set whose membership function is defined as follows
paa(x) = {py(x)}%. Let @ = 2, the operation is as follows
a2 (xp) = {0.2}2 = 0.04,
a2 (x;) ={0.3}2 = 0.09,
e () = {0.732 = 0.49,
e (x,) = {0,532 = 0.25.
42 = fons 009 049 025}

x1 x2 " x5 x4

Difference: Let A and B be two fuzzy sets then the difference operation results in a
fuzzy set whose membership function is defined in terms of intersection and
complementation operation as follows p,_g(x) = min {u,(x),1 — ug(x)}.
ta_p(x;) = min{0.2,1 — 0.6} = min(0.2,0.4) = 0.2,
ta-p(x,) = min{0.3,1 — 0.1} = min(0.3,0.9) = 0.3,
tap(x3) = min{0.7,1 — 0.6} = min(0.7,0.4) = 0.4,
tap(x,) = min{0.5,1 — 0.4} = min(0.5,0.6) = 0.5.

A—p={2202 0t 05}

X1 X2 X3 Xa
Disjunctive sum: Let A and B be two fuzzy sets then the disjunctive sum operation
results in a fuzzy set whose membership function is defined as follows
A®B = (4° n B) U (A n B°). And the membership function for the resultant set is
as follows fiyqp(x) = max {min{1 — p, (), up ()}, min {u, (x), 1 — (Y3

tags (*) = max {min{1 — p, (), up ()}, min {u, (), 1 — up (O}

ttags () = max{min{1 - 0.2,0.6}, min{0.2,1 - 0.6}} =
max{min{0.8,0.6}, min{0.2,0.4}} = max{0.6,0.2} = 0.6,

ttags(xz) = max{min{1 - 0.3,0.1}, min{0.3,1 - 0.1}} =
max{min{0.7,0.1}, min{0.3,0.9}} = max{0.1,0.3} = 0.3,

ttags (x3) = max{min{1 - 0.7,0.6}, min{0.7,1 - 0.6}} =
max{min{0.3,0.6}, min{0.7,0.4}} = max{0.3,0.4} = 0.4,

ttags(xs) = max{min{1 - 0.5,0.4}, min{0.5,1 - 0.4}} =
max{min{0.5,0.4}, min{0.5,0.6}} = max{0.5,0.5} = 0.5.

MEMBERSHIP FUNCTIONS

Fuzzyness in a fuzzy set is characterized by its
membership function. Membership function is
defined as a mapping from U to [0,1], where U
is the universal set and the range [0,1] —
represents its membership value. membership !
function for a set A is represented by m,(x),
where x €U and m,(x) €[0,1]. Since m,(x) is a
function of a single variable x, so we draw a 2D .
plot for m,(x) for all x in U.

-
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Types of membership function: Membership function can be divided into two i.e.
continuous and discrete.

1

0.8}

06}

14(1+%)

04}

y=

0.2}
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Features of membership function: b. AUB
c. ANB
A membership function is characterised by three unique properties which one d. (AuB)©
different form the other. They are as follows:
i Core: It is that part of membership function where the membership Solution:

value is 1 for some elements of a.

the given fuzzy set. i.e.
HA(X) =1. i

ii. Support: 1t is that part of w
membership function where
the membership value is non ,/’:
zero for some elements of the /’ :
given fuzzy set.i.e. pu,(x) # 0. / AN

iii.  Boundary: It is that part of / : o\
membership function where —pmmmmm = Suppert T

~
-
/|
\
i
]
|

=

ot
-
-
e!
'El
-y
;
[+
!
:
'EII
o

the membership value is in . . , . C.

between 0 and 1 for some
elements of the given fuzzy

set.ie. 0 < u,(x) < 1. d

Cross over point: The elements of the fuzzy set of the points in the
membership function where the membership value is 0.5 is called the
crossover point. i.e. z,(x) = 0.5. Basically there are two crossover point for
any membership function.

Height: It the highest membership value for a membership function. i.e.
Height = max {u,(x)}.

Representation of
f uzzy sets: Representation of Membership Function

S

Depending on situation “ Trapezoidal Trianguiar Gaussian
the membership
functions takes VYA A

different shapes. The / \ / \ /\

basic representations 7 N0/ A\ Vi L
are Trapezoidal,
Triangular and
Gaussian.

Example
pa(x) = oo up(x) = 27 and x: [0 — 5]. Determine the mathematical formulae

and graphs for each of the following sets.
a. A¢ B¢

BY: KISHORE KUMAR SAHU, DEPT OF INFORMATION TECHNOLOGY, RIT, BERHAMPUR.

pa(¥) =—=; x=[0-5]

xX+1—-x 1
tacx) =1 —m - T
pp(x) =275 x=[0-5]
,UBC(X) =1- zix = 22;1

taup(x) =

maxip, (), ug(0)}; x=1[0-5]
taus(x) = max{)ﬁ,Z"‘
Hang(X) =

min {p, (), pp(x)}; x =[0-5]
Hanp(x) = min 5: 2™
Hiaume () = min {pge (),
pge(x)}; x=[0-5]

. 1 2%-1
Haupye (X)) = min | ——, = }

2x

(AUB)'
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RELATIONS IN CRISP LOGIC
A relation R in crisp logic is defined as a subset of Cartesian product of two crisp
set A and B i.e. R € A X B. The elements of a relations are ordered pairs i.e. (x; yi)
such that x;€A and y;€B.

Let A={1, 2, 3} and B={2, 3, 4}, then R|1/23

AxB={(1,2), (2,2), (3.2), (1,3), (2.3), (3,3), (1,4), (2.4), (3.4)} 2| 11010

and 3/0(1]0

let R={y=x+1/x EAand y<B).  Then R={(1,2),{2,3),(3,4)}. 4]010]1

OPERATIONS ON RELATIONS

Relations are nothing but sets intern, so the operations that can be applied to set

can be also applied to relations also. Let R and S be the two

relations. S|11213

R={y=x+1/x €A and y € B). Then R={(1,2),{2,3),(3,4)}. ; 8 (1) 2
410010

S={y=x[x €A and yEB}. Then s={{2,2),(3,3)}.

The operations on sets are as follows:

i. Union: The union operation on two relation R and S is defined as follows:
R U S(x,y) = max {R(x,y),S(x,y)}.

R 112 |3 S 1 [2 |3 RuUS 11|23
2 1 /0 |0 2 0 1 0 2 1]1]0
3 0|1 |0 3 0 |0 1 3 0]1]1
4 00 |1 4 0 [0 |0 4 0]0]1

ii. Intersection: The intersection operation on two relation R and S is defined as

follows: RN S(x,y) = min {R(x,y),S(x, y)}.
R 1 |2 |3 S 1 |2 3 RnsS |1|2]|3
2 1 0 0 2 0 1 0 2 0/0]|0
3 0 1 0 3 0 0 1 3 0/0]|0
4 0 0 1 4 0 0 0 4 0/0]|0

iii. Complementation: The complementation operation on a relation R and S is
defined as follows: ~ R¢(x,y) =1 — R(x,y).

R 1|23 R' 1123 S 1123 § 1123
2 [1]0]0 2 0j]1]1 2 0j]1]0 2 1|01
3 |0]1]0 3 1]0]1 3 0j]0]1 3 110
4 (0|01 4 1]1]0 4 0/]0]0 4 1 (11

iv. Composition: The composition operation on two relation R and S is defined as

follows: RoS(x,z) = max {minR(x,y),5(y, 2)}.
R{1|2(S|1|(2|3|RoS|1|2 |3
2(1|10(1]1(0]0 2 1/01(0
3101120110 3 0(1]0
41010 4 0|0]0

RELATIONS IN FUZZY LOGIC
A relation R in fuzzy logic is defined in a similar manner like that of crisp logic as a
sunset of Cartesian product of two fuzzy set A and Bi.e. R € A X B. The elements of
a fuzzy relations are represented as purp(x,y), where 'R’

represent the relation. Let us take two sets: A = 2,0'—7,0'—4 and [AXBlyr |y
05 06 X1 Xz X3 X1 0.2 | 0.2
B ={22), x2 | 0506
1 2
Then A X B is defined as a set whose membership function is LX3 0.4 | 04

given by the relation pi,5(x,y) = min {u, (), up(3)}.

AXB=

{[(xl,yl), 0.2], [(xl,yz), 0.2], [(xz,yl), 0.5], [(xz,yz), 0.6, [(x3,y1), 0.4], [(x3,y2), 0.4]}
The same thing be represented in the form of a table as above.

OPERATIONS ON FUZZY RELATIONS

Similar to crisp logic we also have a similar set of operations on fuzzy logic. To
understand the operations let us take two fuzzy relations R and S as follows.

Union, intersection requires two relations to S

, o R\lyi |y Vi |2
union compatible i.e. R and S should be same X 107106 x:1] 0805
order =mxn in both R and S. X, | 08103 X, | 0106

The operations on fuzzy logic are as follows:
I Union: The union operation on two fuzzy relation R and S is defined as
follows: ugys(x, ¥) = max{ug (x, v), us(x, y)3.

trusCer, y1) = max{ug Geg, 1), us (g, v1)} =max{0.7,0.8} =0.8, RUS | y;

2
trus (1, ¥2) = max{ug (o, v,), us(xq, v,)} =max{0.6,0.5} =0.6, x, |08 }(}).6
HRus(xz,yl) = maX{HR (xz,yl), .u'S(XZ'yl)} =max{0.8,0.1} :0.8, Xz 081 06
trus (2, ¥2) = max{ug (x,, v,), 15 (x5, y,)} =max{0.3,0.6} =0.6.

il. Intersection: The intersection operation on two fuzzy relation R and S is
defined as follows: ugns(x, y) = min{uz (x, v), us(x, 1.
UrnsCer, y1) = min{pg Oy, y1), s Gy, 1)} =min{0.7,0.8} =0.7, RnS |y | 1
trs Gey, y2) = mindug Gy, y2), s (1, y,)} =minf0.6,0.5} =0.5, x; | 07105
trns (2, y1) = minfug Oy, 1), ps (x5, ¥,)} =min{0.8,0.1} =0.1, - 01103
tirns (2, v2) = minfug Gy, v,), s (x5, v,)} =min{0.3,0.6} =0.3. =1
iii. Complementation: The complementation operation on a fuzzy relation R is
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defined as follows: pugc(x,y) = 1 — g (x, ).

ptre ey, v1) = 1 — pp(xy, y,) =1-0.7 =0.3,

pre(Cxy, ) = 1 — up(xy, y,) =1-0.6 =0.4,

pre(p, y1) = 1 — up(x,, v,) =1-0.8 =0.2,

tre (X, ¥2) = 1 — pp(x,, y,) =1- 0.3=0.7.

Composition: For composition operation R and S may not be necessary but
they have number of columns of first relation equals to numbers of rows of
second relations. i.e. if order of R(X, y) and S(y, z) are m x n and n x p

respectively, the composition is | R yvi |y |ys S

z z
possible and the resultant relationis |y, [ 0.7 [ 0.6 | 0.2 I 01.8 02_5
of order m x p. Let the Rand Sbe [y 0810304 v, 10106
represented as follows: Vs 0'7 0'2

a. Max-Min: The Max-Min composition on two fuzzy relation R and S is
defined as follows: ugos(x,z) = max{min{uz(x, ), us(y,2)}| x € X,y €
Y, ze2.
Hros(x1,2,) =
minfug ey, y1), us(yy, 203, min{0.7,0.8},
max § minfug (x;,y,), us(y,,z,)3}, ¢ = max{ min{0.6, 0.1},

min{ug ey, y3), 1s(v,, 23 minf{0.2,0.7}.
0.7
=max)0.1¢ = 0.7
0.2
#ROS(xDZZ)
min{ug Gey, yi), us(yy, 2,03, min{0.7, 0.5},

= max{ min{uz (1, v,), us (35, 2,)3, ¢ = max { min{0.6, 0.6},

minfug ey, y3), 1s(v2, 2,03, min{0.2,0.2}.
0.5
= max [0.6} =0.5
0.2
.URos(xz,Z1)
min{0.8, 0.8},

min{ug (x,, y,), s (75, 2.)3, ¢ = max { min{0.3,0.1},

mln{,uR(xz,y3) us(y,, 23 min{0.4,0.7}.

{mln 1 Cxa, y1), HS(Y1'Z1)}
[ 0.1¢=10.8

Re|y: |y
x; | 03] 04
x2 | 0.2 ] 0.7
#Ros(xz; Zz)
min{ug (xy, y1), s (1, 2,03, min{0.8, 0.5},

= max{ min{ug (x,, y,), us(y,, 2,)3}, ¢ = max { min{0.3, 0.6},
min{ug Cey, y3), s (v2, 2,03, minf{0.4, 0.2},
0.5

=max{0.3 =05
0.2

RoS Z1 Z2
X1 0.7 | 0.5
X2 0.8 | 0.5

b. Max-Product: The Max-Product composition on
two fuzzy relation R and S is defined as follows: pig,s(x,2z) =
max{ uz(x,y) * us(y,z)| x € X,y €Y,z € Z.

{ug G, 1) * us(yy, 2,3, {0.7 x 0.8},
Hros (X1, 21) = max { {ug Oy, v2) * pus(y,, 203, ¢ =maxy {0.6 x 0.1},

{ur (e, v3) * us(y,, 2,3 {0.2x0.7}.
0.56
= max)0.06( = 0.56
0.14
{,UR(.xl,yl) * ﬂg(yl, Zz)}, {07 * 05},

Uros (X1, 2,) = max{ {ug ey, v5) * ps(y,, 2,0}, ¢ =max { {0.6 0.6},

{ur CGep, y3) * us(y,, 2,01 {0.2 % 0.2}.
0.35
=max)0.36( = 0.36
0.04
{HR(Xz, yl) * ,Lls(yl, Zl)}' {08 * 08},

Uros (X2, 21) = max {ug ez, v2) * us(y,, 2,03, ¢ =max{{0.3 x 0.1},

{ur Cep, v3) * ug(y,, 23, {0.4 % 0.7.
0.64
=max)0.03( = 0.64
0.28
RoS Z1 Z2

X1 0.56 | 0.36

X2 0.64 | 0.40
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{ug Gy, 1) * ug(yy, 2,03, {0.8 % 0.5},
Uros (X2, 2,) = max {ug Cez, v2) * 1s(y,, 2,03, ¢ =maxy {0.3 0.6},
{ur Gz, y3) * us(y,, 2503 {0.4 » 0.2}.
0.40
=max)0.18( = 0.40
0.08

Max-Average: The Max-Average composition on two fuzzy relation R
and S is defined as follows: pg,s(x, z) = max{(uz(x,y) + us(y, 2))/2| x €

FIS: FUZZY INFERENCE SYSTEM

FUZZY INFERENCESYSTEM

DATABASE

CRisp_,| FUZZIFICATION
INPUT

RULEBASE

L y

DECISION MAKING
SYSTEM

DEFUZZIFICATICN
ﬁ

|_,CRISP

OUTPUT

X yey, ze2.
HRros (xp Zl)

FUZZY INPUT FUZZY OUTPUT

The fuzzy inference system basically consists of five functional units as follows:

i

il

iil.

iv.

Database: The linguistic variable are represented as membership function
and this is the place where the membership functions are stored.

Rulebase: The linguistic variables are combined with different connectives
and inferences to form rules and this is where these rules are stored in the
form of "if then" rules.

Decision making system: It receives the fuzzy inputs from the fuzzification
unit and processes it with the relations stored in the system to give fuzzy
output to the defuzzification unit.

Fuzzification unit: 1t is the unit, which actually receives the input from the
real world that are crisp in nature. It the converts them into fuzzy inputs by
different fuzzification techniques and forwards it to the decision making
system.

Defuzzification unit: It is the unit, which is responsible for giving output to
the real world that, are crisp in nature. It receives the fuzzy output form the
decision making system and applies different defuzzification techniques to
convert the same into crisp output.

{ur CGep, 1) + sy, 203/2, {0.7 + 0.8}/2,
= max 3 g (g, v,) + ps(y,, 2,0} /2, ¢ =max 4 {0.6 +0.1}/2,
{ur(xp, y3) + ps(y,, 203 /2. {0.2+0.7}/2.
{0 75
=max)0.35( = 0.75
0.45
ﬂRos(x1z Zz
{urCey, v1) + us(yy, 2,)3/2, {0.7 +0.5}/2,
= max? {ug(xp, ) + us(y,, 2,)3/2, { =max{ {0.6 + 0.6}/2,
{ur (ey, y3) + us(yy, 2,03 /2. {0.2 +0.2}/2.
0.60
= max {0 60] = 0.60
0.20
Hros (X2, 2,)
{ur Oz, y1) + us(y1, 203 /2, {0.8+0.8}/2,
= max 3 (g, v,) + us(v,, 2.)3/2, ¢ =max{{0.3 + 0.1}/2,
{tr Oz, y3) + us(yy, 2)3/2. {0.4 +0.7}/2.
{0 80]
=max)0.20¢ = 0.80
0.55
#Ros(xz:zz)
{ur Ccs, v1) + us(yy, 2,)3/2, {0.8 +0.5}/2,
= max ur(xy, v,) + us(v,,2,)3/2, ¢ =max{{0.3 + 0.6}/2,
{ur Gy, y3) + us(y,, 2,03 /2. {0.4 +0.2}/2.
[0 .65
=max)0.45( = 0.65
0.30
RoS Z1 Z2

CRISP LOGIC OR BOOLEAN LOGIC OR CLASSICAL LOGIC

In crisp logic we represent the fact of real world interms of proposition,

connectives and inference rules.

Proposition: A fact in the real world is represented as a proposition. i.e. "Ram is a
good bay" is represented as P(x) where x represents Ram. Proposition of these
kinds are called as atomic or simple proposition. We can obtain complex

propositions by making use of connectives.

Connectives: These are used to build complex propositions with the help of

atomic propositions. The connectives are as follows:
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PlQ[~P[~Q]PvQ] PAQ[P=0Q] ~PVQ
T|T|F|F]| T T T T
T|F|]F|T]| T F F F
FlT|T|F]| T F T T
FIF|T|[T] F F T T

Inference Rules: By making use of given propositions we can infer some unknown

fact. This mechanism is called as inferenceing. There are two kinds of inference

rules that are as follows:

i Modus Ponens: 1t states that if P is true and P=>Q is true, then we infer Q is
true. Here we infer P as a fact and P=>Q is a rule and Q as inference.

P is true is a fact
P=>Q _istrue isarule
Q is true is inferred.

il. Modus Tollens: It states that if ~Q is true and P=>Q is true, then we infer
~Pis true. Here we infer ~Q as a fact and P=>Q is a rule and ~P as inference.

~Q is true is a fact

P=>Q _istrue isarule

~P is true is inferred.
FUZZY LOGIC

In crisp logic we consider a proposition to be either true or false i.e. T/F, but in
fuzzy logic we consider a proposition to take fuzzy truth-values i.e. values
between 0 and 1.

Fuzzy Proposition: A fuzzy proposition is represented as T(P) which takes truth
values between 0 and 1. A fuzzy proposition similar to fuzzy sets are represented
by a membership functions ie. T(4) = uz(x) such that 0 < uz(x) < 1. Eg. Let
A=Ram is good, then T(A)=0.8 implies the statement is partially true, where as
T(A)=1 implies the statement is absolutely true.

Connectives: Complex

or compound fuzzy Connectives Membership Functions
propositions are ~P 1-T(P)
constructed by making PVQ max(T(P),T(Q))
use of connectives. The PAQ min(T(P), T(Q))

use of connectives in P = Qor~PVQ max(1-T(P),T(Q))

fuzzy logic is as follows:

U

Inference Procedure: In fuzzy logic we represent the rules in terms of "if then"
rules. i.e. if we have two fuzzy proposition A and B and we have A=>B, then this is
interpreted as "ifxisin A then y is in B". Another form rule i.e. "ifxin A theny in B
else y in C"is also possible. We represent these rules in terms of a fuzzy relation R,

that takes different form depending on the rule for which is designed i.e. if we are

making use of "Ifxin A theny in B" then R=(AXB)U (A xY),
and "ifxin A theny in Belsey in C" then R=(AxB)U (A xC).
Example:

LetX =1{a,b,c,d}, and Y = {1,2,3,4} be two sets.
Let A be a fuzzy proposition defined on the set Xas A = {0('1—0 98 26 1;},

Let B, C be fuzzy propositions defined on the set Y as B

c {0'0 94 10 0'8} respectivel
172’374 p y:

Then for the rule "ifx in A then y in B, we have R = (Ax B) U (AC x ¥), where ¥

is the fuzzy set representing the set Y such that each element has membership

function equal to 1, i.e. ¥ = {%,%, 1'0,2}

ERy
So pr(x,y) = max {min{u, (), uy (3}, minf{1 — p, (o), uy ()} 3, this can be
rewritten as ug(x,¥) = max {min{u, (), us ()}, 1 — py(x) Yas py (y) is always 1

and will be greater than 1-u,(x) so min{1 — u,(x), uy ()} is equivalent to 1-u, (x).

AxB| 1 | 2 | 3 | 4 |[|AxY| 1|23 ]|4]|[R][1]2]31]4
a [00)00]00)0.0 A |10]10]|10]10]||a|10]10] 10] 10
b [02]08]08]00 B [02(/02]/02]02||blo2]08]08]0.2
c [02]06]06]00 C |04]04|04|04|| c|04]|06]06]04
d /02[10]08]0.0 D [00[00/00[00|[d]o2]10]08]0.0

For the rule "ifx in A then y in B else y in C", we have R = (/T X E’) U (A x 0).

So ur(x,y) = max {min{u, (x), up 33}, min{1 — p, (), uc ()3} 3.

7¢ {10 02 04 00] = _ f00 04 10 08

A_{a'b'c'd}' _{1’2’3’4}

AxB| 1 | 2 3 | 4 AxC| 1 | 2 3 | 4 R| 1| 2 3 | 4
a [00)00]00)0.0 a |00]/04)|10]08]||a|00]|04]10]08
b [02]08]08]00 b [02]04/02]02||blo02]08]08]0.2
c [02]06]06]00 c |00/04|04|04||c|02]|06]|06]04
d /02]10]08]0.0 d [00[00][00[00|[d]02|10] 08100

In Fuzzy we have two
inference processes i.e. Generalized Modus ponens (GMP) and Generalized Modus
Tollens (GMT). The inference process in fuzzy logic is as follows:
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i Generalized Modus Ponens (GMP): It works when a fuzzy proposition P
and a rule P=>Q is given and we need to infer Q.

Example: P="xinA" Given fact
if"xin A"then "vin B" _ Given rule
Q="yinB" Inference

This can be also shown by composition operation also i.e. B = 4 0 R where
R=(AxB)uAC x 7).

Example:

GMP can also be applied to problem where we have more than one
variable i.e. "if old and car is high power then risk is high". So here GMP
take the form  "ifxinAandyin B thenzin C"

P="xinA"and Q="yin B" Given fact
Iif"xinA"and "vin B" then "zin C" Given rule
S="zinC" Inference

Here we make use of C = (A UB)o R

Ii.  Generalized Modus Tollens (GMT): It works when a fuzzy proposition ~Q
and a rule P=>Q is given and we need to infer ~P.
Example: ~Q="xnotinA" Given fact
if"xin A”then "vin B"  Given rule
~P="y notin B" Inference
This can be also shown by composition operation also i.e.~A = ~B o R

where R = (4 x B) U (A€ x 7).

Example:

GMP can also be applied to problem where we have more than one
variable i.e. "if risk not high then not old or car is not high power ". So here
GMP take the form "ifxinAandyinBthenzinC"

S="znotinC" Given fact
if"xinA"and "vin B" then "zin C" Given rule
P="xnotin A" or Q="y notin B" Inference

Here we make use of (~4 N ~B ) = ~Co R

FUZZY UNION AND INTERSECTION

The intersection and union of two fuzzy sets can also be performed with T-norm
and T-conorm or S-norm respectively. Let us discuss these operations in detail.

T-NORMS

T-norm operator is a two place function ie. T( ., . ) satisfying the following
properties:

Properties:

i Boundary: 7(00)=0 T(a1)=T(1,a)=a

generalization to crisp sets.

ii. ~ Monotonicity: T(a, b)<=T(c d) ifa<cand b<d i.e. increase in values of
a and b also increased the value in 7(ag, b).

i, Commutative: T(a, b)=T(b, a) i.e. the operator is indifferent to the
order of fuzzy sets to be combined.

iv.  Associativity: T(a, T(b, c))=T(T(a b), c) i.e. any number of fuzzy
sets and in any order can be combined to form pair-wise grouping since T-
norm is a two place function

i.e. it imposes correct

Operation using T-normes:

The four operations that are allowed in T-norms are as follows:
i Minimum: Tmin(a, b) = min{a, b} = aAb.

ii.  Algebraic product: Tap(a,b) = ab.
jiii.  Bounded product: Topla,b) =0V (a+b—1).
a,if b=1.
iv.  Drastic product: Tap (a,b) =1 b,ifa=1.
0,if a,b < 1.

Relationship between the different operations in T-Norms
Tap(a,b) < Tyy(a,b) < Typ(a,b) < Tpin(a,b)

S-NORM
S-norm operator also called as T-conorm is a two place function i.e. S( ., . )
satisfying the following properties:

Properties:

i Boundary: S(1,1)=1, 5(a0)=S(0,a)=a

generalization to crisp sets.

IL. Monotonicity: S(a, b)<=S5(c d) ifa<cand b<d i.e. increase in values of
a and b also increased the value in 7(ag, b).

i, Commutative: S(a, b)=S5(b, a) i.e. the operator is
indifferent to the order of fuzzy sets to be combined.

iv.  Associativity:  S(a, S(b, c))=5(5(a, b), ¢) i.e. any number of fuzzy
sets and in any order can be combined to form pair-wise grouping since T-
norm is a two place function

i.e. it imposes correct
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(4] ti ing S- : = 1 .
peration using S-norms. 8 Ix1=1 . 1 6=65 6.5
The four operations that are allowed in T-norms are as follows: 9 1 1 1 3.665

i Maximum: Smax(a, b) = max{a, b} = a Vv b. 5 x1xl=> 3 X1+7=73
i. ~ Algebraic sum: Sq.s(a,b) = a+ b — ab. After the all the areas and centroid is calculated, the centroid of the
iii.  Bounded sum: Tps(a,b) = 1A (a+Db). envelope is calculated by the use of the formulae as follows:
a,if b=0.
iv.  Drastic sum: Tys(a,b) =4 b,if a=0. . _YAX 18433
1Lif ab> 0. Centroid x* = 4 =3715 - 49617
Relationship between the different operations in T-Norms
Smax(@,b) < Sg,(a,b) < Sy,(a,b) < Sys(a, b) u Hiz
DECOMPOSITION o os
The output of decision-making system on application of fuzzy inference rule gives o o

fuzzy outputs. These fuzzy outputs cannot be interpreted by the real world, so a
conversion of fuzzy output to crisp output is highly necessary. This conversion is ; ,
brought about with the defuzzification process. 1t acts as the last unit of fuzzy : :
inference system this is responsible for giving crisp output to the users. The v
process is the reverse of fuzzification process. There are different method to carry
out the defuzzification process which are as follows:

L Centroid Method: From the given membership functions an envelope
function is created that contain all the functions to scale. The envelope
membership function is then divided into triangles and rectangle, each
being called as a segment. The segments are numbered and for each of the
segment the area and its centroid w.r.t the origin is calculated.

= =e
SRR

Segment Area x Area.x
1 1 0.67 0.1005 t
EX1X0'3_0'15 — ﬂy
2 2.6x0.3 =0.78 6-1 1,3 1.794 I _k
3 1 2 0.154 \
> X 0.4x0.2 =0.04 3.6 + 3 X 0.4 =38 08
= 0.4 0.6
4 04x0.3=0.12 04 s e—38 0.456 7
125 @5 [~ "m====—-
= . 4
5 15%05 =075 5 s 3.5625 o | A
0.3
= 0.5 -
6 0.5x0.5 = 0.25 05 cc_coe 1.4375 02 ) 1Ll
2 / L ra 4 3 [+ =]
1 1 h '
7 5 x0.5x0.5 = 0.125 3 X0.5+55 =566 0.7075 e r 2 3364 5536 7T & 3
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Ii Centre of sum: In this method area and its centre form the origin is
calculated for all the membership functions as follows:

Membership Area Centre from the origin | Area.x
function x

1

1 - X (3+5)x03=1.2 2:5 3.0
1

2 = X (44+2)x05=1.5 >0 75
1

3 > X B+1Dx1.0=1.2 6.5 13

After the all the areas and centre from the origin is calculated, the centre of
sum is calculated by the use of the formulae as follows:

YA.X 235
=" =50
YA 47

Centre of sum x* =

iii,. ~ Mean of maxima: In this method the maxima are found out from the
envelope membership function and their mean is found out to get the
centre as follows:

Y Maxima 6+7
Centre x* = = =

= = 6.5
Yno.of Maxima 2

CLASSIFICATION OF FUZZY INFERENCE SYSTEMS
There are two kinds of fuzzy inference system, they are as follows:

i Mamdani FIS: In case of Mamdani fuzzy inference system, the input as
well as the outputs are fuzzy sets. These fuzzy outputs are then defuzzified
to give the crisp output.

XX

x \
/

mamdani

(mamdani)

XX z

IL

x =061 y = 0359
|

NIA N

2=0512

s

(-]

Takagi Sugeno and Kang FIS (TSK FIS): In case of TSK fuzzy inference
system, the inputs are only fuzzy in nature and the outputs are not fuzzy,
rather than they are functions of input variable i.e. z(x, ) where 'x' and 'y’
are the input variables and 'z' is a function of x and y. The output function
z may be a constant or linear.

\ cosemd
: fiu)
. (sugeno)
-
x=0693 y=0241

z=-0.989

-11 0.1
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